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Abstract 

Renewable energy harvesting has been a key area of interest for the past few decades. In 
the recent years, several research efforts have gone into outlining the design of the new 
electrical grids. Today, the existing electrical grids and architectures are undergoing 
several improvements to harness the maximum possible electrical energy from the 
renewable sources. The next generation electrical grids are coined as the "Smart Grids". 
These grids are intended and designed to harness the renewable energy sources, to 
bridge the communication between electrical utility and end users, to install the 
advanced metering infrastructure (AMI) and to adopt the concept of real-time pricing 
(RTP)1. This design eventually leads to reliable, resilient, effective and efficient power 
usage. The main motive of this thesis is to design a smart scheduling algorithm for the 
decentralized energy management system (DEMS). Apart from the aforementioned 
motives, the increase in the number of household devices demands for efficient and 
effective power usage. In addition to these motives, the energy demands are to be met 
with a possible reduced cost of consumption (CoEC), which is another challenge.  

The Household devices could be categorized broadly into flexible and non-flexible 
devices. The flexible devices are less time-critical devices 1) The devices, whose start of 
operation could be delayed: such as dishwasher, water pump, washing machine (devices 
could also be operated at regular intervals) 2) The devices, whose start of operation 
could not be delayed but which can be interrupted or turned ON-OFF while operating 
e.g.: charging of Electrical Vehicle (EV), air conditioner and UPS/inverter. The non-
flexible devices are operation time critical devices, which are user input driven, such as 
electric lights, oven and stove. 

The DEMS adopts the "divide and rule" principle, i.e. it deals with monitoring and 
controlling the usages of each flexible device. In this work, we use DEMS principle to 
formulate an optimized algorithm to achieve a positive edge over the existing 
centralized or aggregated household energy management algorithms in terms of energy 
consumption cost and effective power usage. In the proposed algorithm the historic data 
of electricity price, device switching patterns and environmental temperature are 
acquired and the device switching pattern for the next 24 hours are predicted and 
optimized. The device's switching pattern is smartly scheduled considering the lowest 
electricity price, temperature (if a device is temperature dependent), possible number of 
interruptions and possible maximum waiting time while attempting to complete the 
daily load requirements. The thesis is structured into 6 sections. In SECTION I, the 
problem faced in traditional electrical grid and the future grid technologies are 
explained. SECTION II outlines the formulated DEMS algorithm along with a brief 
explanation of its results. SECTION III and SECTION IV cover the explanation of the 
algorithm in detail. The performance evaluation of the proposed algorithm is stated in 
SECTION V. SECTION VI gives a summary and concludes this thesis. 

                                                           
1RTP: Real-time pricing is a conceptual approach countering the existing trend of fixed electricity price for the 

consumption at the retailer end, irrespective of the cost of electricity generation. RTP provides the user, the 

information about the actual electricity price at any given time. Thereby allowing him to adjust the electricity 

usage by scheduling the device's operation. 
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      intervals. 

𝑊𝐷
𝑀𝑎𝑥

  :  Maximum allowed number of waiting time of a device.  

U_𝑊𝐷
𝑀𝑎𝑥

  : Present waited time, updated at regular intervals e.g. sampling 
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𝐴𝑛𝑐ℎ, 𝐻𝑃𝑟𝑖𝑐𝑒

𝐿𝑅𝑐𝑘  



A smart scheduling algorithm for a DEMS 

 

8  

 

and 𝐻𝑃𝑟𝑖𝑐𝑒
𝑃𝑎𝑙 .  

h    : Hours of a day. 

std(X)   : Standard Deviation of the data, X. 
 
Hstd(X)    : Standard deviation of the forecasted data, X: set of 96 samples, each 

   sample at 15 min interval. 
 
[υp1, υp2 ,..υpn]   : Set of n predictor variables applied as an input to the Predictor  

    model. 

[υi1, υi2 ,.... υin]   : Set of n intervention variables applied as an input to the Predictor 

      model. 

 𝜐𝑖
𝑀𝑜𝐷    : An intervention variable / vector comprising of "Minutes Of Day" 

      data. 

 

𝜐𝑝
𝑃𝑊𝑆𝐷𝑃   : A predictor variable / vector comprising of "Previous week Same 

      Time Price" data. 

 

 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃   : A predictor variable / vector comprising of "Average Previous Week 

      Same Day Price" data. 

 

 𝜐𝑖
𝑇    : An intervention variable / vector comprising of "Temperature"  

      data. 

 

 𝜐𝑖
𝑅𝐻     : An intervention variable / vector comprising of "Relative humidity" 

      data. 

 

 𝜐𝑖
𝐷𝑃    : An intervention variable / vector comprising of "Dew point" data.  

 

 𝜐𝑖
𝑊𝑆                                 : An intervention variable / vector comprising of "Wind speed" data. 

 

𝜐𝑝
𝑃𝑊𝑆𝐷𝐿   : A predictor variable / vector comprising of "Previous week Same 

      Time Load" data. 

 

𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿   : A predictor variable / vector comprising of "Average Previous Week 

      Same Day Load" data. 

 

 𝜐𝑖
𝑊𝑖𝑆      : An intervention variable / vector comprising of "Weekend is true" 

      data. 

 

 𝜐𝑖
𝑊𝐷𝑁    : An intervention variable / vector comprising of "Weeks Day  

      Number" data. 
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 𝜐𝑖
𝐻𝑜𝐷    : An intervention variable / vector comprising of "Hour Of Day" data. 

TD  : The training period, at which the H, predictor variables and  
      intervention variables are sampled and applied as input to the  

      predictor model. 

π*    : Optimum decision/ policy outputted from MDP at an instant. E.g.: 

     Optimum decision for next 15 min.  

𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

  : The Mean of Prediction error/MAPE over entire year in  

     percentage. 

𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

  : The Mean of Prediction accuracies over entire year in percentage. 

𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

  : The average of standard deviation of prediction accuracies over 

     entire year in percentage. 

A    : The prediction accuracy. 
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1. Introduction 
 

In the existing conventional electrical grids, the generated electricity is delivered to the 

consumers through a complex network, electrical grids [13]. The construction of these 

electrical grids started in the early 1900's, in different countries around the globe. 

Initially, the infrastructure or the electrical grids were laid by several local electrical 

utilities. These local utilities discretely supported the electrical demands of their 

respective geographical regions. However, in the late 1950's, due to the increase in 

power demands, different electrical utilities interconnected their electrical grid i.e. 

interconnections through the transmission systems. These utilities were depended on 

its own power plants or purchased the power from other utilities. The interconnections 

of several local electrical grids also led to the emergence of large and jointly owned 

electrical generation units [13]. The power plants back then usually generated electricity 

from non-renewable energy sources such as oil and petroleum products, coal/fossil, 

hydrocarbons, natural gas or nuclear sources. Presently at several geographical regions, 

the existing grids have reached the limit of their lifespan and should be replaced and 

upgraded. During this process, it is necessary to link the energy harvested from various 

renewable energy sources. The trend to shift to renewable energies like hydropower, 

biomass, wind, geothermal and solar are increasing. On the other hand, with the 

emerging technologies and innovative ideas, the household appliances have been under 

the process of optimization. This optimization is in terms of enhanced operability, 

simpler user interaction and several other user supportive aspects. However, this 

optimization is achieved at what cost? Is it at increased electrical power? Can the device 

seek and operate at low electricity price?  Researchers have already understood the 

criticality of these issues for e.g.: blackout, brownouts and increase in the power demand 

that could be encountered in the near future.  

To address several concerns as explained above, the research on the smart grid has 
emerged. The smart grid technically convinces to add the low power data lines along 
with the existing high power electrical lines. This data lines are used to connect, to 
communicate and to exchange the data between power sourcing and demanding entities 
in the electrical grid. The exchange of data, such as the daily power usage, hourly 
electricity-price, hourly power demand and several other parameters and information 
would be essential to overcome the aforementioned issues. To define "Smart Grid", it’s 
rather an in-definitive concept, due to its varied perceptions in the scientific community. 
Some researchers believe that the prepaid power usage as smart, i.e. installation of 
smart meters at the user end as smart, some researchers presume that harvesting 
renewable energy from the sources such as solar or wind in a distributed fashion as 
smart grid and some agree that the establishment of communication between the power 
generation and consumption entities as smart. However, all these still could collectively 
be called as a smart grid. 

In a smart grid, several approaches have already been developed for the smart energy 
management. One such major approach is real-time pricing (RTP) and smart metering. 
RTP or dynamic pricing is a new concept, whereby either the automatic or user applied 
price-aware load scheduling mechanism is employed to shift the load at peak hours and 
to improvise the effectiveness in power generation, thereby addressing the present day 
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issues [3]. The smart meters constitute the advanced metering infrastructure (AMI). 
This establishes a communication link between the electricity consumer and electrical 
utility. The smart meters record the electricity consumption at regular intervals i.e. at 
each hour or 15 minutes or other programmable intervals. The recorded load 
consumption information is then updated to the electrical utility. This information helps 
the utility to better analyze the hourly load demands and thereby, the energy demand to 
the energy generation efficiency could be improved. The smart meter enables features 
such as automatic meter reading (AMR). The author in [1] proposes a centralized energy 
management system (CEMS) based on RTP, in which the entire building (e.g.: a house or 
an office) is considered as a single entity containing a single monitoring and controlling 
unit. This controlling unit manages all the device operations inside the building. The 
algorithm aims to achieve minimum aggregated CoEC by directing the operations of 
several flexible devices at an instant, based on the stochastic behavior of CoEC. As in [2], 
Wireless Sensor Networks (WSN's) are used for an in-home energy management (iHEM) 
application. The schemes are based on the communication between the smart 
appliances, a central Energy Management Unit (EMU), a smart meter and a storage unit. 
When a consumer turns a device ON, a data packet is received by the EMU. The EMU 
communicates with the smart meter and fetches the RTP: based on the electricity price 
information, the EMU reschedules the operation of the device by shifting the operation 
to off-peak periods and thereby reducing the CoEC. Stating a real world example of 
smart grid applications and the communication technologies, the author in [5] provides 
information on the network requirements and the communication technology for varied 
smart grid applications. The application is used in the Home area network (HAN), 
Neighborhood area network (NAN) and Wide area network (WAN). The author outlines 
the low cost and the lower power consumption communication technologies for the 
future smart grid applications. However, even with all these efforts in the direction of 
the smart grid, there exists no state of the art algorithm or a smart grid architecture 
which could be globally accepted due to its varied perceptions as aforementioned.  

To formulate and optimize algorithm considering many volatile real world aspects and 
parameters such as temperature, power demand, efficiency and eco-friendly power 
generation is a key driving factor. The scope of this thesis is at the user end, i.e. at the 
household appliance level. An attempt to improve the efficiency at the device level that 
in-turn poses as a positive influence on the entire grid. This decentralized system with 
RTP is one of the possible approaches, unlike the CEMS, which considers the entire 
house has single end entity, i.e. the aggregated load. This thesis is based on the 
decentralized energy management system (DEMS) where the end entity is each device in 
the house. These devices are individually monitored, their usage patterns are learned, 
analyzed, forecasted and finally, its operations are controlled efficiently and effectively 
considering various influences and parameters. 

While considering the algorithm to be a smart scheduling algorithm for the DEMS, 
challenges in the implementation costs and infrastructure costs are addressed in 
parallel. This thesis is formulated and intended to use the existing microcontroller 
hardware in the devices. The proposed algorithm will be supplied as an update to the 
devices, thereby incurring negligible implementation costs/ hardware up-gradation 
costs/infrastructure costs. 
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The Household devices could be categorized broadly into flexible and non-flexible 
devices. The flexible devices are less time-critical devices 

1) The devices, whose start of operation could be delayed: such as dishwasher, water 
pump, washing machine (devices could also be operated at regular intervals).  

2) The devices, whose start of operation could not be delayed but which can be 
interrupted/turned ON-OFF while operating: such as charging of Electrical Vehicle (EV), 
air conditioner and UPS/inverter (devices which operate to maintain desired set points).  

The non-flexible devices are operation time critical devices, which are user input driven, 
such as electrical lights, oven and stove. In this work, the devices considered are a Water 
pump, a Heater, and a Cooler, all of which are flexible devices. However, for Non - 
flexible devices the proposed algorithm should be retuned and evaluated. 

The performance evaluation of the proposed algorithm is just as vital as the 
development of the algorithm itself. Therefore, better performance strategies and tests 
need to be formulated and conducted. In order to aid in the strong performance 
evaluation, the varied environmental conditions of different cities, the varied device 
interruption times, the varied maximum device waiting time and city's electricity pricing 
information has to be considered. Thereafter, from the results of these varied test cases, 
an inference has to be drawn. 
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2. Outline of Algorithm 
 

The main motivation of the thesis is to formulate an efficient algorithm, which can 

schedule a flexible device's switching2 operation such that the cost of energy 

consumption 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 incurred is reduced and the power efficiency 𝜂𝑃𝑜𝑤𝑒𝑟  is 

improved. The algorithm takes into account the seasonality SEN, the historic switching 

pattern of a specific devices 𝐻𝐿𝑜𝑎𝑑 and the specific city's historical data: temperature 

 𝐻𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝐶𝑖𝑡𝑦

, electricity price 𝐻𝑃𝑟𝑖𝑐𝑒
𝐶𝑖𝑡𝑦

, the maximum allowed device waiting time 𝑊𝐷
𝑀𝑎𝑥

, 

the maximum device interruptions possible in a day 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥

, the total power 

requirement in a day 𝑃𝐷
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

, RTP ζt, next 24 h CoEC 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 and the total device 

execution time left TExe.  

In Figure 1, an overview of the proposed DEMS algorithm is presented. In this work, the 

DEMS is designed as a 3 stage algorithm, similar to the 3 stage algorithm with CEMS in 

[6]: Real Time Monitoring (RTM), Stochastic Scheduling (STS) and Real Time Control 

(RTC). However, we concentrate on a decentralized approach, i.e. a single device control 

rather than a centralized or a simultaneous multiple device control as in [6]. The 

algorithm predicts the next 24 h switching patterns 𝜔𝐿𝑜𝑎𝑑 and thereafter it optimizes 
these patterns, 𝜔𝐿𝑜𝑎𝑑

∗ . The predicted load patterns for the next day, i.e. the switching 

patterns are shifted to arrive at the new and optimized switching patterns. These shifts 

are based on the temperature at time t=0 (if the device is temperature dependent), the 

electricity price ζt at time t=0 and the next 1 h price 𝜁𝑡
ℎ and other device 

specifications: 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥

, 𝑊𝐷
𝑀𝑎𝑥

, 𝑃𝐷
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

, SEN, TExe and 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. The complexity of 

optimizing 𝜔𝐿𝑜𝑎𝑑 is handled by the Markov Decision Process (MDP). The entire 

algorithm is run periodically on a daily basis so that the optimized switching schedule 

𝜔𝐿𝑜𝑎𝑑
∗  for the next 24 h is available beforehand. SECTION III deals with the prediction 

phase. SECTION IV states the MDP formulation in detail, i.e. optimization phase. 

SECTION V covers the performance evaluation. Finally, the optimal algorithm and the 

supporting results are stated in SECTION VI. 

Real Time Monitoring (RTM) or Phase 1: 

This phase is considered to be the prediction phase. The device switching patterns are 

monitored periodically at a rate of 15 minutes. However, this interval rate could be 

further reduced to 5 minutes or even lesser, considering the growth trend in the 

computational power. The switching patterns are the ON-OFF patterns of a device. In 

phase 1, the device's next 24 h switching patterns are predicted. These predicted 

switching patterns are un-optimized, in which the probability of energy usage 

inefficiency (over power usage)  𝜂𝑃𝑜𝑤𝑒𝑟 and the CoEC is high.  

                                                           
2 The device is assumed to be in ON state, when the device is performing the intended action and OFF state 

when it is not. In both the cases the device is in standby mode i.e. the microcontroller is active. E.g.: A Water 

Pump, washes the cloths when it is ON and not when it is OFF, however in both the cases the device remains 

powered in standby mode. 
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The process of using 𝐻𝐿𝑜𝑎𝑑 for forecasting 𝜔𝐿𝑜𝑎𝑑 
𝑡+𝑃 is called training, where P is the desired 

forecast horizon. The considered training period range is one week to several years, i.e. 

one week ≤ TD ≤ several years. However, the efforts are made to identify which TD would 

fit relatively best, i.e. either the short duration TD ≈ one week, where the usage dynamics 

are captured better or longer duration TD ≥ one Month, where there are chances of 

averaging the data and thereby, discarding the usage dynamics and the SEN to a 

considerable extent.  

The historical data of the device is considered as training data, i.e. device switching 

patterns 𝐻𝐿𝑜𝑎𝑑, the temperature of the chosen city 𝐻𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and the corresponding 

electricity pricing information  𝐻𝑝𝑟𝑖𝑐𝑒 . The historical data are acquired at a sampling rate 

of 15 minutes, i.e. 96 samples in 24 h. TD of one week is considered to be an ideal 

training period, since it covers and learns the user dependent usage dynamics better. 

Accordingly, as an example, one week of 𝐻𝐿𝑜𝑎𝑑, 𝐻𝑃𝑟𝑖𝑐𝑒 and 𝐻𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 at 15 minutes 

sampling interval is used as training data set in phase 1 to predict 𝜔𝐿𝑜𝑎𝑑 and 𝜔𝑃𝑟𝑖𝑐𝑒 at a 

sampling interval of 15 minutes. Today, there exits several state of the art weather 

forecasters. In order to reduce the computational effort, the forecasted temperature 

𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  data for the next 24 h is fetched from one of those stable online sources 

and are directly passed on to phase 2. Hence, only the device's switching pattern 𝜔𝐿𝑜𝑎𝑑 

and electricity price 𝜔𝑃𝑟𝑖𝑐𝑒 data is forecasted using the predictive models. 

The proposed algorithm is simulated, analyzed and evaluated in MATLAB. MATLAB 

consists of toolboxes supporting several prediction algorithms or predictor models such 

as ARIMA, Neural Network (NN), state space algorithms, Hybrid Fuzzy logic and time 

series algorithms - ANFIS, Linear regression and nonlinear regression. To remove the 

ambiguities in selecting a relatively good predictor model for the smart scheduling 

algorithm for the DEMS, each prediction models have to be formulated and the results of 

each model are to be evaluated. An effort is also put into identifying the optimal training 

period. In addition, the different devices (E.g.: Water pump, Heater and Cooler) in 

combination with different cities are chosen for a quality performance evaluations and 

thereafter to arrive at a relatively good predictor model irrespective of varied test cases. 

Stochastic Scheduling (STS) or Phase 2:  

The objective of this phase is to optimize the device switching patterns, 𝜔𝐿𝑜𝑎𝑑
  . The 

process of optimization involves altering/shifting the device's switching pattern based 

on the influencing factors. This shifting has to be smart, in order to account for the 

uncertainties such as the seasonality SEN, the maximum allowed device waiting time 

𝑊𝐷
𝑀𝑎𝑥

, the maximum device interruptions possible in a day 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥

, the total power 

requirement in a day 𝑃𝐷
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

, RTP ζt, next 24 h CoEC 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 and the total device 

execution time left TExe. These uncertainties have to be included in the algorithm to 

obtain the optimized schedule 𝜔𝐿𝑜𝑎𝑑
∗  [6]. The property of randomness in any variable, 

when observed over any time is called stochasticity and scheduling the device switching 

in accordance with the stochastic behavior is called stochastic scheduling.  

Markov decision processes are a useful mathematical framework within probability 

theory to make optimal decisions π*. The MDP is an extension of Markov chains. The 

basic assumption to Markov theory is the memoryless, i.e. it is assumed that the next 
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step could be predicted by considering solely the current step, unlike the chain of 

historic events. In Markov chains, it is assumed that the future and the past states are 

independent and the next state is only driven by the present event or state (i.e. Memory-

less property). The Markov chains are discrete states (St, St+1,...,St+n), regardless of the 

nature of time t, being discrete t=1, 2...n or continuous t ≥ 0. An MDP is a Markov process 

with m states S= S1,S2,...,Sm and n possible actions per state a= a1,a2...an, where n may or 

may not be equal to m. Since MDP operates in discrete time steps or states, it can be 

formulated to decide the next possible optimal policy3 π*. The π* obtained as a result of 

the MDP is the next 15 minute's ON-OFF state of the device, i.e. since the sampling 

interval is 15 minutes, the π* directs the device to remain turned OFF or ON for the next 

15 minutes. At each time step, the device's present state 𝜔𝐿𝑜𝑎𝑑
𝑡 , temperature, electricity 

price  𝜔𝑃𝑟𝑖𝑐𝑒
𝑡 , updated max waiting time 𝑈_𝑊𝐷

𝑀𝑎𝑥 , updated max interruptions of device 

U_𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥 and updated total power usage left for the day 𝑈_𝑃𝐷

𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦
 are applied as 

inputs to the MDP. In order to arrive at the optimal switching 

policy for the next 24 ℎ,  𝜔𝐿𝑜𝑎𝑑
∗ = [𝜋1

∗,𝜋2
∗, 𝜋3

∗,..,𝜋96
∗ ], the MDP is iterated for 96 times (

24 ℎ

15Min
). 

Since there exists a requirement to obtain the status of the device, electricity price and 

temperature at each time step, their status is the predicted in phase 1, 

i.e. 𝜔𝐿𝑜𝑎𝑑, 𝜔𝑃𝑟𝑖𝑐𝑒  and 𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. At the end of phase 2, the device switching patterns 

are optimized. The optimized schedule is provided as an input to phase 3 where it 

physically switches the device. In SECTION IV the MDP formulation and the 

corresponding results are explained in detail. The performance evaluation of the MDP is 

described in SECTION V.  

Real Time Control (RTC) or Phase 3:  

Once the next 24 h switching pattern is optimized in phase 2, in phase 3 the 

microcontroller in the device switches the device accordingly. This thesis assumes 

devices with only 2 operational states, i.e. ON and OFF state. However, in future works, 

the algorithms can be designed for the devices operating at varied power modes 𝑀𝐷
𝑡 : 

stand-by, low, medium and high power modes.  

 

 

 

 

 

 

 

 

                                                           
3Policy: In case of an MDP, a policy means choosing an optimal action among the several possible actions. In 

our use case the MDP is iterated for 96 times, so policy in here means a series of ON - OFF actions (for an entire 

day), which is an optimal switching schedule for a flexible device to incur reduced CoEC, 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦 . 
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Flowchart: Outline of Algorithm 
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Figure 1. An overview of the proposed DEMS algorithm 



A smart scheduling algorithm for a DEMS 

 

18  

 

3. Phase 1: Real time monitoring / Prediction 

phase 
 

The motive of phase 1 is to predict the next 24 h device's switching patters 𝜔𝐿𝑜𝑎𝑑
   and 

the electricity price pattern 𝜔𝑃𝑟𝑖𝑐𝑒 
  . This section states the following  

1. The need of phase 1 or the prediction phase. 

2. A brief description of the chosen predictor models. 

3. The list of historic data or the inputs applied to each predictor model, in order to 

improve the prediction accuracy. 

4. The considered test conditions and the simulation results of phase 1 in detail. 

5. Conclusion. 

3.1 Need for prediction 
 

The algorithm is simulated and evaluated in MATLAB. The prediction phase or Phase 1 

employs various predictor models to predict 𝜔𝐿𝑜𝑎𝑑  and 𝜔𝑃𝑟𝑖𝑐𝑒 information. In Markov 

theory, it is assumed that the past is independent of the future, only the present state is 

sufficient to estimate the next step. The main objective of phase 2 is to optimize the ON-
OFF scheduling policy for the next 24 h, 𝜔𝐿𝑜𝑎𝑑

∗ , which gives 96 decision points [𝜋1
∗, 

𝜋2
∗, 𝜋3

∗,...,𝜋96
∗ ], one for each 15 minute interval. To choose the optimal action at each 

decision point, 𝜋𝑥
∗  with 1 ≤ 𝑥 ≤ 96, the MDP requires the real-time electricity price, real-

time temperature and device's switching state information at that specific instant of 

time as input. It is not possible to fetch these real time data in a simulated environment. 

Therefore, the future states comprising of the mentioned real-time information are 

predicted, e.g. a device's switching pattern is predicted with its samples present at 15 

minutes interval, 𝜔𝐿𝑜𝑎𝑑  = [𝜔𝐿𝑜𝑎𝑑
𝑡=0 , 𝜔𝐿𝑜𝑎𝑑

𝑡=15 , … , 𝜔𝐿𝑜𝑎𝑑
𝑡=1440]. This predicted information is 

applied as an input to the MDP at its corresponding time step. 

3.2 Predictor models 
 

The six chosen predictor models are listed in Table 1. From the listed predictor models, 

it is essential to identify one predictor model which provides a relatively best prediction 

accuracy A. Hence, with a similar training data set or a historic data H = [HLoad, HPrice, 𝜐p | 

𝜐i], the different predictor models are trained and corresponding responses ω are 

evaluated.  

Table 1. List of Predictor models 

Sl.No Name  
1 Linear Regression 
2 Non Linear Regression 
3 ARIMA 
4 ANFIS 
5 Neural Network Fitting 
6 State Space Model 
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As discussed in SECTION II the prediction models are employed to predict 2 aspects: 

 1) For the prediction of the electricity price for the next 24 h, 𝜔𝑃𝑟𝑖𝑐𝑒. 

 2) For the prediction of the device switching pattern for the next 24 h, 𝜔𝐿𝑜𝑎𝑑  . 

 

1) For the prediction of the electricity price for the next 24 h, 𝜔𝑃𝑟𝑖𝑐𝑒: The algorithm 

predicts the electricity price information irrespective of the chosen device type (Water 

pump/Heater/Cooler). The outcome of the predictor model is a response variable4, 

which is the electricity price for the next 24 h, 𝜔𝑃𝑟𝑖𝑐𝑒. The historic price data is received 

as an input to the predictor model with a sampling interval of 15 minutes 𝐻𝑃𝑟𝑖𝑐𝑒  =

[𝐻𝑃𝑟𝑖𝑐𝑒
𝑡=0 , 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−15 , 𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−30 , … , 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−𝑛 ], where 𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−𝑛  is the nth oldest sample of historical data. 

For that purpose, x predictor variables [υp1,υp2,...,υpx] and y intervention variables [υi1, 

υi2,...,υiy] are considered to estimate the response variable ω accurately. The list of 

independent variables [υp1,υp2,...,υpx,υi1,υi2,...,υiy] are to be carefully selected since a large 

number of predictor variables do not imply a prediction with a better accuracy. Any 

unnecessary information should be avoided. The list of selected predictor variables is 

[𝜐𝑖
𝑀𝑜𝐷, 𝜐𝑝

𝑃𝑊𝑆𝑇𝑃, 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃, 𝜐𝑖

𝑇 , 𝜐𝑖
𝑅𝐻, 𝜐𝑖

𝐷𝑃, 𝜐𝑖
𝑊𝑆]. 

 

 a) "Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷:  

 

 This variable captures the minute at which the historic electricity price data    

 𝐻𝑃𝑟𝑖𝑐𝑒 is sampled. Since the sampling interval is 15 minutes, there exists 96 

 samples in a day, i.e. a day consists of 1440 minutes. Accordingly, 15,30,45,..., 

 1440 are the set of sample values for every 24 h. Since the considered TD is one 

 week, the set of sample values is repeated for seven times. This variable is 

 categorized as Interventional variable or Intervention indicator, since its value is 

 neither an actual nor a derived value of HPrice. The 𝜐𝑖
𝑀𝑜𝐷 is a set of n sample values, 

 each sample derived from the corresponding sample values of HPrice. 

 

                                            𝜐𝑖
𝑀𝑜𝐷 = [15, 30, … ,1440,15, 30, … , 1440, … , 15, 30, … ,1440] 

 

- b)"Previous week Same Time Price"  𝜐𝑝
𝑃𝑊𝑆𝑇𝑃: 

 

 In order to learn the electricity price patterns of same day of previous week, this 

 predictor variable is included. This variable fetches the previous week's price 

 data at the same day-of-week and the time-of-day as the present sampling time t. 

 Term n denotes a week before the last day of TD. 

 

     Min = 24 h • 60. 

 

                                                           
4 The input variables to the predictor model are called the predictor variable υp and the output of predictor 

model is called a response variable. Some of the predictor variables with an additional information that help 

estimate the response variables better are called the intervention indicators or the intervention variables υi. 
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𝜐𝑝
𝑃𝑊𝑆𝑇𝑃 = [𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(15+(𝑀𝑖𝑛•7))
, 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(30+(𝑀𝑖𝑛•7))
, … , 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(1440+(𝑀𝑖𝑛•7))
, 

            … , 

                 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(15+(𝑀𝑖𝑛•𝑛))
, 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(30+(𝑀𝑖𝑛•𝑛))
, … , 𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(1440+(𝑀𝑖𝑛•𝑛))
] 

 

 c)"Average Previous Week Same Day Price" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃:  

 

 In order to learn the  average electricity price value 𝜇𝐻𝑃𝑟𝑖𝑐𝑒 of the same day of 

 the previous week, this predictor variable is included. This variable captures the 

 computed average of the previous week's price data on the same day-of-week as 

 the present sampling day. Term n denotes a week before the last day of TD. 

 

      Min = 24 h • 60. 

 

𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃 = [𝜇𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(𝑀𝑖𝑛•7)
, 𝜇𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(𝑀𝑖𝑛•7)
, … , 𝜇𝐻𝑃𝑟𝑖𝑐𝑒

𝑡−(𝑀𝑖𝑛•7)
, 

             …, 

                         𝜇𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(𝑀𝑖𝑛•𝑛)

, 𝜇𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−( 𝑀𝑖𝑛•𝑛)

, … , 𝜇𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(𝑀𝑖𝑛•𝑛)

] 

 

Where, 

𝜇𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(𝑀𝑖𝑛•7)

=  𝑀𝑒𝑎𝑛(𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(15+(𝑀𝑖𝑛•7))

+ 𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(30+(𝑀𝑖𝑛•7))

+ ⋯ + 𝐻𝑃𝑟𝑖𝑐𝑒
𝑡−(1440+(𝑀𝑖𝑛•7))

) 

 

 d)"Temperature" 𝜐𝑖
𝑇 , "Relative humidity" 𝜐𝑖

𝑅𝐻, "Dew point"  𝜐𝑖
𝐷𝑃and "Wind speed"          

 𝜐𝑖
𝑊𝑆:1 

 

 These sets of variables, capture the temperature and the other environmental 

 influences of the chosen city. To overcome the situations in which the HPrice or its 

 derivatives, e. g. 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃, alone may not be good enough to estimate 𝜔𝑃𝑟𝑖𝑐𝑒, 

 these y intervention variables [υi1,υi2, ... ,υiy] are included. The power generated in 

 a power plant is influenced by the environmental uncertainty, e.g.: the power 

 generated by a windmill is influenced by the wind speed. These variables are 

 expected to aid in a better prediction and it is a necessary element of the 

 proposed algorithm. For this reason, these variables are categorized as

 Interventional variables. 

 

2) For the prediction of the device switching pattern for the next 24 h, 𝜔𝐿𝑜𝑎𝑑: The 

predictor models are employed to predict a flexible and a temperature independent 

device's switching pattern. The flexible devices which are operated at fixed interval, are 

the devices under consideration, e.g.: a Water pump. However, for the devices operating 

based on the temperature uncertainties, e.g.: a Cooler or a Heater, the device switching 

pattern is not predicted but it is determined by comparing the forecasted temperature 

value (for next 24 h) with 25° C. A set of x predictor variables [υp1,υp2,...,υpx] and y 

intervention variables [υi1, υi2 ,...,υiy] are considered to estimate the 𝜔𝐿𝑜𝑎𝑑 accurately. The 
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list of independent variables [υp1,υp2,...,υpx,υi1,υi2,..., υiy] are to be carefully selected since a 

large number of predictor variables do not imply a prediction with a better accuracy A. 

Any unnecessary information should be avoided. The list of selected variables are 

[𝜐𝑖
𝑀𝑜𝐷 , 𝜐𝑖

𝑊𝑖𝑆, 𝜐𝑖
𝐻𝑜𝐷 , 𝜐𝑖

𝑊𝐷𝑁, 𝜐𝑝
𝑃𝑊𝑆𝑇𝐿 , 𝜐𝑝

𝐴𝑃𝑊𝑆𝐷𝐿, 𝜐𝑖
𝑇 , 𝜐𝑖

𝑅𝐻, 𝜐𝑖
𝐷𝑃, 𝜐𝑖

𝑊𝑆]. 

 

a) "Minutes of Day"  𝜐𝑖
𝑀𝑜𝐷:  

  

This variable captures the minute at which the device's historical switching data  

𝐻𝐿𝑜𝑎𝑑is sampled. Since the sampling interval is 15 minutes, there exists 96 samples 

in a day, i.e. a day consists of 1440 minutes. Accordingly, 15,30,45,...,1440 are the 

set of sample values for every 24 h. Since the considered TD is one week, the set of 

sample values is repeated for seven times. This variable is categorized as an 

Interventional variable or an Intervention indicator, since its value is neither an 

actual nor a derived value of HLoad. The 𝜐𝑖
𝑀𝑜𝐷 is a set of n sample values, each 

sample derived from the corresponding sample values of  HLoad.. 

 

𝜐𝑖
𝑀𝑜𝐷 = [15, 30, … ,1440,15,30, … ,1440, … ,15, 30, … ,1440] 

 

b) "Weekend is true"  𝜐𝑖
𝑊𝑖𝑆:  

 

This variable captures whether the day is considered a weekend or a weekday, i.e. 

Saturday and Sunday is indicated by the value '1' and weekdays from Monday to 

Friday are denoted by '0'. This predictor variable helps the predictor model to 

observe the weekend and weekday behaviors in HLoad and influence the 𝜔𝐿𝑜𝑎𝑑 

accordingly. The 𝜐𝑖
𝑊𝑖𝑆 is set of n sample values, each corresponding to n sample 

values of HLoad. E.g. Consider a training data set, which is starting from Monday, the 

𝜐𝑖
𝑊𝑖𝑆 is given by 

𝜐𝑖
𝑊𝑖𝑆 = [0,0,0,0,0,1,10, … ,1,0, … ,1] 

 

c) "Weeks Day Number"  𝜐𝑖
𝑊𝐷𝑁: 

 

This variable captures the day's index in a week. Sunday is considered as the start 

of the week. Sunday is indicated by the value '1' and in sequence, Saturday is 

denoted by '7'. This allows the predictor model to learn the relationship between a 

particular day-of-week and the corresponding HLoad. The 𝜐𝑖
𝑊𝐷𝑁 is a set of n sample 

values, each corresponding to n sample values of HLoad. E.g. Consider a training data 

set, which is starting from Monday, the 𝜐𝑖
𝑊𝐷𝑁 is given by 

 

𝜐𝑖
𝑊𝐷𝑁 = [2,3,4, … ,7,1,2, … ,7,1] 

d)"Hour of Day"  𝜐𝑖
𝐻𝑜𝐷:  

 

This variable captures the hour at which the device's historical switching data 

𝐻𝐿𝑜𝑎𝑑 is sampled. Since the sampling interval is 15 minutes, there exist four 
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samples every hour. Accordingly, 1,1,1,1,2,2,2,2,3,...,24,24 are the set of sample 

values for 24 h. Since the considered TD is one week, the set of sample values is 

repeated for seven times. This variable is categorized as an Interventional variable 

or an intervention indicator, since its value is neither an actual nor a derived value 

of HLoad. The 𝜐𝑖
𝐻𝑜𝐷, is a set of n sample values, each corresponding to n sample 

values of HLoad. 

 

𝜐𝑖
𝐻𝑜𝐷 = [1,1,1,1,2,2,2,2,3, … ,24,1,1,1,1,2, … ,24,1,1,1,1, 2, … ,24] 

 

e) "Previous week Same Time Load" 𝜐𝑝
𝑃𝑊𝑆𝑇𝐿: 

 

In order to learn the device's switching patterns of the same day of the previous 

week, this predictor variable is included. This variable fetches the previous week's 

switching data at the same day-of-week and the time-of-day as the present 

sampling time t. Term n denotes a week before the last day of TD. 

 

      Min = 24 h • 60. 

 

𝜐𝑝
𝑃𝑊𝑆𝑇𝐿 = [𝐻𝐿𝑜𝑎𝑑

𝑡−(15+(𝑀𝑖𝑛•7))
, 𝐻𝐿𝑜𝑎𝑑

𝑡−(30+(𝑀𝑖𝑛•7))
, … , 𝐻𝐿𝑜𝑎𝑑

𝑡−(1440+(𝑀𝑖𝑛•7))
, 

…, 

                      𝐻𝐿𝑜𝑎𝑑

𝑡−(15+(𝑀𝑖𝑛•𝑛))
, 𝐻𝐿𝑜𝑎𝑑

𝑡−(30+(𝑀𝑖𝑛•𝑛))
, … , 𝐻𝐿𝑜𝑎𝑑

𝑡−(1440+(𝑀𝑖𝑛•𝑛))
] 

 

f) "Average Previous Week Same Day Load"  𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿:  

 

In order to learn the average number of switching 𝜇𝐻𝐿𝑜𝑎𝑑, of the same day of the 

previous week, this predictor variable is included. This variable captures the 

computed average of previous week's load data at the same day-of-week as the 

present sampling day. Term n denotes a week before the last day of TD. 

 

      Min = 24 h • 60. 

 

𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿 = [𝜇𝐻𝐿𝑜𝑎𝑑

𝑡−(𝑀𝑖𝑛•7)
, 𝜇𝐻𝐿𝑜𝑎𝑑

𝑡−(𝑀𝑖𝑛•7)
, … , 𝜇𝐻𝐿𝑜𝑎𝑑

𝑡−(𝑀𝑖𝑛•7)
, 

            …,  

                       𝜇𝐻𝐿𝑜𝑎𝑑
𝑡−(𝑀𝑖𝑛•𝑛)

, 𝜇𝐻𝐿𝑜𝑎𝑑
𝑡−(𝑀𝑖𝑛•𝑛)

, … , 𝜇𝐻𝐿𝑜𝑎𝑑
𝑡−(𝑀𝑖𝑛•𝑛)

] 

Where, 

𝜇𝐻𝐿𝑜𝑎𝑑
𝑡−(𝑀𝑖𝑛•7)

=  𝑀𝑒𝑎𝑛(𝐻𝐿𝑜𝑎𝑑
𝑡−(15+(𝑀𝑖𝑛•7))

+ 𝐻𝐿𝑜𝑎𝑑
𝑡−(30+(𝑀𝑖𝑛•7))

+ ⋯ + 𝐻𝐿𝑜𝑎𝑑
𝑡−(1440+(𝑀𝑖𝑛•7))

) 

 

g)"Temperature" 𝜐𝑖
𝑇 , "Relative humidity" 𝜐𝑖

𝑅𝐻, "Dew point" 𝜐𝑖
𝐷𝑃and "Wind speed"          

 𝜐𝑖
𝑊𝑆 : 

 

These sets of variables, capture the temperature and the other environmental 

influences of the chosen city. To overcome the situations in which the HLoad or its 
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derivatives, e. g. 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿 , alone may not be good enough to estimate 𝜔𝐿𝑜𝑎𝑑, these y 

intervention variables [υi1,υi2,...,υiy] are included. The power consumption is 

directly proportional to the environmental uncertainty, e.g.: The cold or warm  

weather influences the usage of the heater. These variables are expected to aid  in a 

better prediction and it is a necessary element of the proposed algorithm. For  this 

reason, these variables are categorized as an Interventional variable or an 

Intervention indicator. 

 

Note: In this thesis, an attempt is made to predict the aggregated power consumption of 

the household as well. For the prediction of the aggregated power consumption for the 

next 24 h, 𝜔𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, the list of selected predictor or intervention variables are 

same as that of the variables in device switching prediction and the term load refers to 

the aggregated power consumption [𝜐𝑖
𝑀𝑜𝐷 , 𝜐𝑖

𝑊𝑖𝑆, 𝜐𝑖
𝐻𝑜𝐷 , 𝜐𝑖

𝑊𝐷𝑁, 𝜐𝑝
𝑃𝑊𝑆𝑇𝐿 , 𝜐𝑝

𝐴𝑃𝑊𝑆𝐷𝐿 , 𝜐𝑖
𝑇 , 𝜐𝑖

𝑅𝐻, 

𝜐𝑖
𝐷𝑃, 𝜐𝑖

𝑊𝑆]  instead of device's switching pattern. 

 

A. Linear Regression  

 

In statistical modeling, the regression analysis helps to estimate the relation between 

the variables. A regression is a set of technique that helps in understanding the relation 

between the dependent variables and the independent variables. The dependent 

variables are the response variable and the independent variables are the predictor 

variables and the intervention variables. Understanding the relationship between one 

independent variable and one dependent variable is called a simple linear regression. On 

the other hand, when more than one independent variable is involved, the process is 

called as multiple linear regression [9]. 

 

Let xa, xb, xc,..., xp be the p independent variables or the features influencing the 

dependent variable, y. It is assumed that the dependency y on xa, xb, xc,..., xp are linear. Let 

the assumed linear model be  

 

     𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖     [1] 

 

Where, 

 β0 : y intercept or coefficient 

 β1 : slope or coefficient 

 ϵ   : error 

 

Let us consider an example of the advertising data on different media [14]. Figure 22 

shows the respective budgets and sales. Efforts are made to identify the synergy of sales 

among these advertising data. 

https://en.wikipedia.org/wiki/Simple_linear_regression
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Figure 2. Advertising budgets and sales in different media [14]. 

If some estimates of the coefficients (𝛽0 and 𝛽1 ) are available beforehand, the future 

response values or the sales can be estimated by  

 

                                                                     𝑦�̂� = 𝛽0̂ + 𝛽1̂𝑥𝑖 + 𝜖     [2] 

 

Where the hat denotes the estimated value. As stated in [14], the response value yi is 

based on xi. The residual sum of error can be defined as. 

 

     𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 + ⋯ 𝑒𝑛
2    [3] 

 

Where e represent the ith residual ei =yi - �̂�i . RSS is considered as the residual sum of 

errors. The least square approach is applied to minimize the RSS in order to capture the 

best linear fit.  

 

          Figure 3. Least square fit for regression of sales on TV [14] 

In the proposed algorithm, the multiple linear regression analysis is adopted, i.e. 

analyzing the relationship between one dependent variable and multiple independent 
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variables. As a first step, the predictor model is trained with the historical data set/data 

points, i.e. y is defined as a linear function of xa, xb, xc ,..., xp and by adding some Gaussian 

noise εi [14]. The noise indicates the fact that, the estimated data points will not fit the 

model perfectly. β, β1 ,..., βp are the coefficient or the weighting factor.  

 

 
y = βa xa +βb xb + βc xc + ...+ βpxp + εi 

[4] 

The input data is represented as a x × p matrix, where each row corresponds to a data 
point and each column corresponds to a predictor variable or a feature. Since each 
output yi is just a single number, the collection is represented as an n-element column 
vector y. As stated in [14], the linear model can be expressed as  
 

 y = Xβ + εi   or  y = f(Xi, β) + εi 
[5] 

Where β is a p-element vector of coefficients, and ε is an n-element vector, where each 
element εi, is normal with mean 0 and variance σ2. This leads to the optimization 
problem [9,14,29]. 
 

 

 
𝑦 = min

β
 ∑( 𝑦𝑖

n

𝑖=1

−  X𝑖𝛽)2 [6] 

Where minβ refers to 'minimizing over β'. This refers to a least square linear regression 
problem. Xi refers to the row i of the matrix X. Regress is the linear fit model, used in this 
work.  
 
B. Nonlinear Regression  

A nonlinear regression is a type of regression analysis, in which the response variable is 

modeled by a function, which is a nonlinear combination of the model parameters and is 

dependent on the independent variables [9]. Unlike the linear model with y = mx+c fit, 

the nonlinear model tries to fit the curvy data points using an exponential model or a 

power model. As stated in [9], a nonlinear regression model can be written as 

 Yn = f(xi , θ)+εi 
[7] 

Where xi corresponds to the predictor variables, f corresponds to the nonlinear function 

of p predictor variables. However, the generic nonlinear regression model equation is 

similar to the linear regression model, Equation 5, and the difference is specified by 

mentioning θ for the parameters in the nonlinear model. The term εi corresponds to a 

Gaussian noise. A nonlinear functions for several data sets are represented in a matrix 

form, η(θ), and xn = x × p matrix, where each row corresponds to a data point and each 

column corresponds to a predictor variable or a feature. Since each output yn is just a 

single number, the collection is represented as an n-element column vector y. As in [9], 

the nonlinear model can be expressed as  

 Yn = η(θ)+εi 
[8] 

This predictive model is present in ANOVA (analysis of variance) toolbox of MATLAB. 
fitnlm, the nonlinear fit model. This predictor model accepts 3 independent variables. 
Accordingly, the three predictor variables x1, x2 and x3 are. 

https://en.wikipedia.org/wiki/Regression_analysis


A smart scheduling algorithm for a DEMS 

 

26  

 

 
 1) For the prediction of the electricity price for the next 24 h 

  a)"Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Price" 𝜐𝑝
𝑃𝑊𝑆𝐷𝑃 

  c)"Average Previous Week Same Day Price" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃 

  

 2) For the prediction of the device switching patterns for the next 24 h.  

  a)"Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Load" 𝜐𝑝
𝑃𝑊𝑆𝐷𝐿 

  c)"Average Previous Week Same Day Load" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿 

 

C. ARIMA  

An Auto Regression Integrated Moving Average (ARIMA) model is one example of a time 

series regression model. A time series is a set of observations of a variable measured at 

regular intervals of time. The ARIMA model is used to analyze the univariate time series 

data y(t) [8,15,29]. The univariate time series data refer to a random variable's 

observation, captured at equal intervals t. The ARIMA model extrapolates the analyzed 

components of the time series data to estimate the future data, yt+1, yt+2,...,yt+n [8,15]. The 

components in the time series data are the trends, seasonality, cyclical behavior and the 

other random behaviors. The analysis of data in linear and nonlinear regression analysis 

is via cross-correlation, i.e. the correlation is found between two or more different 

signals: between the independent variables x1,x2,...,xn and the response variable y. The 

ARIMA model analyzes the given data by finding the auto-correlation, i.e. the correlation 

of a signal's present sample yt and with the various delayed copies of itself yt-1, yt-2,...,yt-n. 

ARIMA as a model is a combination of Autocorrelation methods (AR), differencing of 

non-stationary time series data (I) and Moving Averages (MA) [15]. 

Auto Regression / Autocorrelation model (AR model): 

An AR model is one, in which yt depends on its own past values yt-1, yt-2,...,yt-n.  

     yt = f(yt-1, yt-2,..., yt-n, εt)                  [9] 

An AR model depending on no past value is denoted by AR (0). An AR model depending 

on one past value is denoted by AR (1). In generic, an AR model which depends on its p 

past value is denoted by AR (p) [15]. 

    y = β0 + β1 yt-1 +β2 yt-2 + β3 yt-3 + ... + βp yt-p + εt              [10] 

     y= ∑ 𝛽𝑖𝑦𝑖−1
𝑝
𝑖=0  + 𝜀𝑡                [11] 

  Where, 

   βa: Auto correlation at lags 1, 2,...,p. 
   εt : Residual error at time t. 
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Moving Averages model (MA model): 

An MA model is one, in which yt depends on its past random error value εt-1, εt-2,...,εt-n. The 

error terms are assumed to be white noise with zero mean [15]. 

     yt = f(εt-1, εt-2,..,εt-n, εt)                [12] 

An MA model depending on no past value is denoted by MA (0). An MA model depending 

on one past value is denoted by MA (1). In generic, an MA model which depends on its q 

past value is denoted by MA (q) [15]. 

    y = ϕ0εt + ϕ1εt-1 +ϕ2εt-2 + ϕ3εt-3 + ... + ϕqεt-q                [13] 

  

      y= ∑ 𝜙𝑖𝜀𝑖−1
𝑞
𝑖=0                [14] 

Where, 
            𝜙𝑖: Residual error at lags 1, 2,...,p. 
             εt : Residual error at time t. 
 

Auto Regression Moving Average Model (ARMA model): 

A scenario in which a time series data may be represented as a mix of both AR and MA 

models is referred as ARMA model, i.e. the resulting model is of order (p, q) with p AR 

terms and q MA terms [15]. 

 y =β0 + β1 yt-1 +β2 yt-2 + β3 yt-3 + ...+ βpyt-p+εt + ϕ1εt-1 +ϕ2εt-2 + ϕ3εt-3 + ...+ ϕqεt-q    [15] 

This form of the model assumes a time series data to be stationary, i.e. the joint 

probability of the data is time-invariant, thereby, this property implies that the 

parameters such as mean, variance and covariance are invariant of time, which in reality 

is rarely possible. The stationarized series are relatively easy to predict [8,15,25]. 

Typically the trends, cycle and random-walking contribute to the non-stationary 

behavior of the data set. A time series, which is non-stationary can be made stationary 

by differencing. The time series which has an inconsistent mean, variance and 

autocorrelation over time (season to season or period to period) and has these statistics 

changes between the periods and between the seasons constant is said to be non-

stationary or difference-stationary [25]. This non-stationary behavior is removed by 

including a different order of differencing (e.g. 1st order,2nd order,...) into the model. 

These statistical differences obtained is untransformed to obtain the predicted original 

series [25]. A series which is differentiated once is denoted by I(1). Similarly, if a time 

series is differentiated for d times, it is termed as I(d). Collectively AR, MA and I form the 

triplet (p,d,q) i.e. ARIMA model [15]. 

In the econometrics toolbox of the MATLAB, the implementation of an Autoregressive 

Integrated Moving Average (ARIMA) model is present. The ARIMA model can be applied 

in cases where the data shows evidence of being non-stationary. ARIMA forecasts a 

value as a linear combination of historical data and past errors. The ARIMA modeling 

process/ ARIMA procedure is divided into 3 stages, i.e. the univariate time series 

estimation and forecasting are carried out by using a methodology such as Box-Jenkins 

(B-J) [8,15]. 

https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Stationary_process
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1) Identification stage. : The autocorrelation (ACF)5 methods are employed to find the 

patterns from the past data. 

2) Estimation and diagnostic stage: At this stage, the coefficients are estimated and the 

best fit model is diagnosed. E.g if ARMA is selected, tool diagnoses between AR (0)/AR 

(1)... and adopts the best among them. 

3) Forecasting stage: For future time slots the time series components are extrapolated. 

 

Chaotic Time Series prediction using ANFIS   

The time series has properties such as cyclic, non-stationary, nonlinearity and chaotic 

[16]. Among these properties, the usual property found in reality is chaotic-time series 

[16]. These chaotic time series can be either discrete chaotic time series f(xn) = xn+1 or 

continuous chaotic time series 𝐹(𝑥(𝑡)) =
𝑑𝑥(𝑡)

𝑑𝑡
  [17], where x is the random variable of a 

chaotic system, whose projection is extremely difficult to analyze and predict. In the 

chaotic time series prediction theory, the aim is to use the known past x|(t-n) and present 

scalar value x|t to predict the future value x|(t + p).  There exists several intelligent systems 

such as neural network, fuzzy system and genetic algorithm etc., to predict the chaotic 

time series. In this thesis, the prediction accuracy of a hybrid system is investigated, i.e. 

of an Adaptive Neuro-Fuzzy Inference System or an Adaptive Network-based Fuzzy 

Inference System (ANFIS). ANFIS integrates both pattern learning property of the neural 

networks and the decision making / the reasoning property of the fuzzy logic principles. 

ANFIS is one of the special structures of the Neuro-Fuzzy Networks (FNNs). ANFIS is a 

model free estimator. ANFIS is composed of two parts, i.e. antecedents and conclusion. 

The input and output are connected by fuzzy rule base in network form [16]. A two input 

ANFIS structure is shown in Figure 4.  

 

 

Figure 4. Two input ANFIS structure [16] 

 

                                                           
5ACF : Autocorrelation function refers to the observations of time series data that are related to each other. 

https://en.wikipedia.org/wiki/Fuzzy_logic
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The circular nodes in the ANFIS architecture indicate that they are fixed, whereas the 

square nodes indicate that they have parameters to be learnt [16]. During the training, 

in the forward pass, the input vector propagates through each layer and in backward 

pass, the errors are sent back. The ANFIS learns the rules and the membership function 

from the data [27]. The rules are if-then rules that are determined for quantitative 

reasoning. The Membership Function (MF) is a characteristic function of a subset A, that 

indicates the degree of membership of an elements x of any set X, in the fuzzy set A, and 

is denoted by 𝜇𝑋(𝑥), where A ϵ X. The two input fuzzy rules are [27] 

    If  x is A1 and y is B1 then  f1 = p1x+q1y+r1               [16] 

    If  x is A2 and y is B2 then  f2 = p2x+q2y+r2               [17] 

The output of each node in layer 1 is 

     O1,i = 𝜇𝐴𝑖(𝑥)  for  i = 1,2                 [18] 

     O1,i = 𝜇𝐵𝑖(𝑦)  for  i = 3,4                 [19]

       Where, 

O1,i(x) : The membership degree of the x and y 

The layer 2 computes the fuzzy AND of the antecedents.  

     O2,i = wi= 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦) , i=1,2               [20] 

The layer 3 normalizes the MFs. 

𝑂3,i  = 𝑤𝑖̅̅ ̅  =  
𝑤𝑖

𝑤1 + 𝑤2
, 𝑖 = 1,2                                                     [21] 

The layer 4 computes the consequent of the fuzzy rule. 

                 O4,i = 𝑤𝑖̅̅ ̅ 𝑓𝑖  =  𝑤𝑖̅̅ ̅(𝑝𝑖 x + 𝑞𝑖 y + 𝑟𝑖)              [22] 

The layer 5 sums up the layer 4 output. 

      f = 𝑤1̅̅̅̅  𝑓1 + 𝑤2̅̅̅̅  𝑓2                 [23] 

The Imperialistic Competitive Algorithm (ICA) and the Least Square Estimation (LSE) are 

used in ANFIS to train and determine the antecedent's and consequent's parameters 

(𝑎𝑖, 𝑏𝑖  and 𝑐𝑖), such that the ANFIS estimated output matches the original training data 

[16]. 

Prediction algorithm: A chaotic time series although exhibits stochasticity in general, in 

its phase-space reconstruction with appropriate embedding dimensioning D and time 

delay τ, a quasi-periodic attractor6 in phase space can be obtained [16].  

                                                           
6A set of numerical values, towards which the system tend to evolve and which are quasi-periodic in behavior. 
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Step 1: Create a matrix with time series data. Let x1,x2,...,xN  be the chaotic time series. An 

embedded phase vector u(i) in the D dimensional phase space RD is 

     u(i) = [x(i) x(i-τ) ... x(i-(D-1)τ],                  [24] 

     Where, 

 i ϵ [1+(D-1)τ, N] 

Step 2: Apply the time series matrix to the ANFIS structure. The matrix has the 

embedding phase vector as columns and chaotic time series as rows. 

     U = [uT(i) uT (i-1) ... uT (i+m)]                 [25] 

     Where, 

      i ϵ [1+(D-1)τ, N-m-k]  

      k : Number of prediction steps 

Step 3: The ANFIS is trained with the input matrix by hybrid-iterative procedures such 

as ICA and LSE algorithms [16]. When the error between the estimated and the original 

data is within the acceptable limits, the process is stopped. 

An example of the most widely used chaotic time series is Mackey-Glass time series is 

shown in Figure 5, whose differential equation is given by 

                                                      
𝑑𝑥(𝑡)

𝑑𝑡
=  

0.2𝑥(−𝑡−𝜏)

1+𝑥10+(𝑡−𝜏)
                [26] 

 

Figure 5. Chaotic time series [28] 
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The future time series values x|(t+p) is predicted by considering the present and the past 

chaotic time series, i.e. the training data set [18]. In the proposed algorithm, the 

assumption is τ = 6 and D = 4. 

    [x(t-18), x(t-12), x(t-6), x(t) ; x(t+P)]              [27] 

These datasets could be applied as inputs to the pattern recognition and the decision 

making algorithm such as ANFIS for predicting x(t+p) with a high accuracy. MATLAB 

provides the ANFIS estimator in the standard fuzzy logic toolbox. Genfis1 on receiving the 

training data outputs a fuzzy interface system, then evalfis perform fuzzy inference 

calculations to predict the next state space x(t+P). 

D. Neural Network fitting  

 

Although the soft computing has evolved in the recent years, making a machine think 

like a human has been an unprecedented challenge. To resolve the computing gap that 

existed to mimic the human brain, several researches were carried out to emulate the 

neural activity of the human brain, thereby, the human prowess. These researches have 

led to the field of Artificial Neural Networks (ANNs) [7,11,19].  

 

 

 Figure 6a. A simplified neuron [19]   Figure 6b.Artifical neuron [19]   

 

The Figure 6a. shows the simplified neural network. If the electrical impulses in the cell 

body are greater than a certain threshold, a signal/information is sent to another neuron 

via dendrites and synapses. The efficiency of synapses differs as per the lifetime of 

neurons. The Figure 6b. shows the artificial neuron. The ANNs are a collection of several 

such artificial neurons. The inputs are denoted by x. The synapses are modeled by 

weight vector w. Therefore the output of this neuron is  

                   y = f(∑ 𝑤𝑖𝑥𝑖𝑖 ) = f(wT x)                           [28] 

The ANN is represented in Figure 7. The underlying neural network consists of several 

interlaced hidden neuron layers. Based on changes in the environment or in the inputs, 

the neural network trains/learns and adapts to the change by changing the weights w in 

the network.  
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Figure 7. ANN [19] 

A model of single neuron [26] 

 

 
 

1. Let x1,x2,...,xm be the m input values or synapses. They do not compute anything 

but pass the values to processing nodes. 

2. Let w1,w2,...,wm be the weights corresponding to each synapse. 

3. The input values are multiplied by their weights and summed. 

𝑣 =  𝑤1𝑥1  +   𝑤2𝑥2+ . . . +  𝑤𝑚𝑥𝑚  =  ∑ 𝑤𝑖

𝑚

𝑖−1

𝑥𝑖                                     [29] 

4. The output function is weighted sum. y = f(v). This function is called activation 

function. 

𝑓(𝑣) = 𝑎 + 𝑣 =  𝑎 +  ∑ 𝑤𝑖

𝑚

𝑖−1

𝑥𝑖                                               [30] 

Where, a is called the bias, i.e. bias a is the intercept and the weights, w1,...,wm is 
the slope. A neural network may have hidden nodes, which are not connected to 
the environment directly. These nodes are organized as layers to form hidden 
layers.  
 

5. A cost function is used to compute the error between the true output and the 
estimated output. One such cost function is linear mean square regression.  
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    c(y, f(x)) = | y - f(x)|2                [31] 
 

Feed-Forward Neural Networks 
 

A collection of neurons connected together in a network can be represented by a 
directed graph [26] 

 
 

1. Nodes represent the neurons, and arrows represent the links between them. 
2. Each node has its number, and a link connecting two nodes will have a pair of 

number (e.g. (1,4)). 
3. Networks without a feedback loop are called a feed forward network. 

 

Training  

 

The process of fine-tuning the weights wij of the network to match the desired output is 

called training [26]. The training algorithm used in this thesis is Supervised learning. In 

Supervised learning, the network is supplied with the input data and the expected 

output. The outline of the supervised algorithm is  

 

1. Set all the weights wij to random values. 

2. Feed the network with input data x1,x2,...,xm. 

3. Compute the network output f(v). 

4. Change the weight w11,w12,...,wmn of the nodes.  

5. Repeat from step 2 to 4 until the computed cost or error is small. 

 

MATLAB provides a standard toolbox for prediction with a multilayered feed-forward 

artificial neural network. NN is more of a black box capable of learning hidden 

dependencies, which is not possible to explicitly represent with any equation based 

model such as regression analysis. Available data are divided into three sets: learning 

set, validating set and testing set. These sets could be overlapping and do not have to be 

continuous. The learning set is a sequence that is shown to the neural network during 

the learning phase. The network is adapted to it to achieve required outputs (in other 

words, weights in the network are changed based on this set). The difference to the 

required output is measured using the validating set and this difference is used to 

validate whether the learning of the network can be finished. The last set, testing set, is 

then used to test whether the network is able to work also on the data that were not 

used in the previous process [11]. 
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E. State Space Model  

The State Space Models (SSM) along with Kalman filters serves as a good tool to analyze 

and forecast the time series data. This section describes the linear Gaussian state space 

model or the dynamic linear model (DLM). The state space model comprises of two 

aspects, i.e. the state process and the observations or output [28]. These state process or 

unobserved signal xt, given the input ut = [u1,...,un], in state space model, are considered to 

be hidden or latent and are Markovian [28], i.e. it is assumed that the future and past 

states are independent and conditional on the present state. The observations, yt  are 

independent and dependence among these observations are formulated by linear 

Gaussian state space model [28].  

 

Figure 8. State space model [28] 

The linear Gaussian state space model has a first order state equation, which is p-

dimensional auto regressive vector [28]. 

       xt = ϕxt-1 + wt , wt ~ N(0,Q)                 [32]

    where, 

      wt : The process noise of dimension px1 with '0' mean and covariance Q. 

State vector xt is not observed directly but it's linearly transformed and noise added 

version is given by an observation equation [28], which is q-dimensional (larger or 

smaller than state vector) 

           yt = At xt + vt , vt ~ N(0,R)                 [33]

    where,  

     At : A qxp measurement  or observation matrix.                                                                         

     vt  :The measurement noise of dimension qx1 with '0' mean and covariance R. 

Let ut be the input vector rx1, the mathematical model is given by 

        xt = ϕxt-1 + ϒut + wt                 [34] 

        yt = At xt + Гut + vt                 [35] 

Where, ϒ is pxr and Г is qxr matrix and either of them can be zero matrix. The motive of 

the state space model is to estimate the hidden unobserved data xt, given the observed 
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data yt. After defining the mathematical model, the xt is estimated and fine-tuned by 

Kalman filter, which is denoted by 𝑥𝑡
𝑠  [28]. The 𝑥𝑡

𝑠
  is the linear filtered version of yt. 

        𝑥𝑡
𝑡  = ∑ 𝐵𝑠

 𝑡
𝑆=1 𝑦𝑠

 
                 [36] 

     Where,  

Bs : Suitably chosen smoothening matrix of order p x q . 

Several related time series that has dynamic interactions can be forecasted using the 

STATESPACE procedure. MATLAB provides the feature of estimation using state space 

models under the linear model identification of the system identification toolbox. State 

space models support the data such as time or frequency domain data, real or complex 

data or even single or multiple output. 

3.3 Prediction of power consumption and electricity price for household 

(aggregated power consumption) 

 

The historic data H= [HPower_Consumption, HPrice, 𝜐p | 𝜐i] is provided to train each predictor 

model. The TD also plays a vital role as described in SECTION II. As a first step, the type 

of load considered is the aggregated power consumption of the house. The aggregated 

power consumption at specific instant of time t is the summed up energy consumption 

of the household devices (e.g.: Water pump 𝑃𝑊𝑃
𝑡 , heater 𝑃𝐻𝑒𝑎𝑡𝑒𝑟

𝑡 , cooler 𝑃𝐶𝑜𝑜𝑙𝑒𝑟
𝑡 , TV 𝑃𝑇𝑉

𝑡  
etc.) which are operating at specific point in time t, 𝑃𝑇𝑜𝑡𝑎𝑙

𝑡  = 𝑃𝑊𝑃 
𝑡 + 𝑃𝐻𝑒𝑎𝑡𝑒𝑟 

𝑡 +  𝑃𝐶𝑜𝑜𝑙𝑒𝑟 
𝑡 +

⋯ + 𝑃𝑇𝑉 
𝑡 . As a first task, the centralized energy management system CEMS was 

simulated, since it is assumed that, there exists one monitoring unit per house for all 

household appliances. 

Step 1:  All aforementioned 6 predictor models are employed. 

Step 2: Each predictor model is trained with two year’s worth (TD = two years) of H = 

 [HPower_Consumption, HPrice, 𝜐p | 𝜐i]. The predictor models are employed to predict 

 𝜔𝑃𝑟𝑖𝑐𝑒  and 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛. However, the temperature forecast 𝜐𝑝
𝑇 is 

 directly fetched from the online weather forecasters. As an Initial step, a set of 

 predictor variables are chosen and the corresponding power consumption and 

 electricity price prediction accuracy is observed. In successive steps, by trial and 

 error the different predictor variables are chosen such that such a way that it 

 improves the prediction accuracy. Accordingly, the predictor variables and the 

 intervention variables chosen for all but except the nonlinear regression 

 predictor model are 

 1) For the prediction of the electricity price for the next 24 h, 𝜔𝑃𝑟𝑖𝑐𝑒: 

  a)"Minutes Of Day"  𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Price"  𝜐𝑝
𝑃𝑊𝑆𝐷𝑃 

  c)"Average Previous Week Same Day Price"  𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃 

  d)"Temperature"  𝜐𝑖
𝑇 , "Relative humidity" 𝜐𝑖

𝑅𝐻, "Dew point"  𝜐𝑖
𝐷𝑃 and"Wind 

  speed" 𝜐𝑖
𝑊𝑆 
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 2) For the prediction of the aggregated power consumption for the next  

       24 h, 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 

  a)"Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Load" 𝜐𝑝
𝑃𝑊𝑆𝐷𝐿 

  c)"Average Previous Week Same Day Load" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿 

  d)"Weekend is true" 𝜐𝑖
𝑊𝑖𝑆 

  e)"Weeks Day Number" 𝜐𝑖
𝑊𝐷𝑁 

  f) "Hour Of Day" 𝜐𝑖
𝐻𝑜𝐷 

  g) "Temperature"  𝜐𝑖
𝑇 , "Relative humidity" 𝜐𝑖

𝑅𝐻, "Dew point"  𝜐𝑖
𝐷𝑃 and "Wind 

       speed"  𝜐𝑖
𝑊𝑆 

 

 In the nonlinear regression model the count of independent variables 𝜐p | 𝜐i that 

 can be applied as input is 3. The independent variables 𝜐p |𝜐i that result in an 

 improved A, are chosen by trial and error, i.e. by monitoring the curve fit of the 

 response variable y with occurred data of next 24 h and checking the MAPE. The 

 chosen predictor variables and intervention variables are 

 

 1) For the prediction of the electricity price for the next 24 h, 𝜔𝑃𝑟𝑖𝑐𝑒: 

  a)"Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Price" 𝜐𝑝
𝑃𝑊𝑆𝐷𝑃 

  c)"Average Previous Week Same Day Price" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝑃 

  

 2) For the prediction of the aggregated power consumption for the next  

       24 h, 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 

  a)"Minutes Of Day" 𝜐𝑖
𝑀𝑜𝐷 

  b)"Previous week Same Time Load" 𝜐𝑝
𝑃𝑊𝑆𝐷𝐿 

  c)"Average Previous Week Same Day Load" 𝜐𝑝
𝐴𝑃𝑊𝑆𝐷𝐿 

Step 3: Once the predictor models are trained with the corresponding independent 

 variables for the prediction of the device's switching or electricity price, they 

 predict  𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 or 𝜔𝑃𝑟𝑖𝑐𝑒, respectively. The sampling interval is 15 

 minutes. Therefore, the historical time series data H and the forecasted 24 h data 

 ω are  available at 15 minutes sampling intervals, i.e. making a total of 96 sample 

 points  in every 24h. 

 𝜔𝐴𝑔𝑔_𝐿𝑜𝑎𝑑  = [𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑡 , 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑡+15 , … , 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑡+1440 ] 

                                                   𝜔𝑃𝑟𝑖𝑐𝑒  = [𝜔𝑃𝑟𝑖𝑐𝑒
𝑡 , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+15 , 𝜔𝑃𝑟𝑖𝑐𝑒
𝑡+30 , … , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+1440] 

 

Step 4: Once the prediction is completed, the prediction accuracy A has to be evaluated.

 A = (1-MAPE)•100, where MAPE is expressed in percentage and is given by 

 Equation 37. 
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 𝑀 =  
100

n
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

n

k=0

 [37] 

    Where, 
      At  : Actual value.   
     Ft : Forecast value.    
     M : Prediction accuracy. 

3.4 Results  

 

The test condition for the effective evaluation of the predictors models are as follows 

I. The predictor models adopted in this work are  

a) ARIMA 

b) Nonlinear regression 

c) Linear regression 

d) ANFIS 

e) Neural network 

f) State space model 

II. Place of consideration: A small two-storied office in a city, Anchorage is 

considered, which is having a power consumption of 60 kWh - 80 kWh in 

weekdays and 30 kWh - 50 kWh in weekends. 

III. Duration of training data TD: Two year’s worth of HAgg_Power_Consumption, temperature 

HTemperature and price HPrice information’s were applied to the predictor models as 
inputs, i.e. as a set of x predictor variables and y interventional variables [υp1, 

υp2,...,υpx,υi1,υi2,...,υiy]. The considered training year is 2015 and 2016 (start date: 

Jan 2nd 2015 and end date: Jan 01st, 2017) and the considered forecast date is Jan 

2nd of 2017. Jan 2nd 2017, was selected as the forecast date, since Jan 01 is a 

holiday. However, the predictor models would have predicted successfully for Jan 

01st as well, if an additional predictor variable addressing the special 

holidays, 𝜐𝑝
𝑆𝐻 , in a year were included in the design. 

IV. Sampling interval: As per the requirement, the device is controlled and 

monitored at an interval of 15 minutes, therefore, the H = [HPower_Consumption, HPrice, 

𝜐p | 𝜐i] data are acquired at a rate of 15 minute interval, giving rise to 96 samples 

each day.  

𝜔𝑃𝑟𝑖𝑐𝑒/𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 

[𝜔𝑃𝑟𝑖𝑐𝑒/𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑡 , 𝜔𝑃𝑟𝑖𝑐𝑒/𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑡+15 , … , 𝜔𝑃𝑟𝑖𝑐𝑒/𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑡+1440 ] 
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Output: 

Next 24 h aggregated power consumption and electricity price i.e. 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

and 𝜔𝑃𝑟𝑖𝑐𝑒  is forecasted at 15 minutes sampling interval. For both the prediction 
aspects, Table 2 shows the prediction error of each predictor model. The considered 
training duration is two years and the chosen forecast date is Jan 2nd, 2017. In case of the 
power consumption prediction, the neural network is predicting relatively good with 
less prediction error. In case of electricity price prediction, ANFIS model is predicting 
relatively good with less prediction error. The SSM is consuming approximately 9 hours 
to estimate the future states and has relatively poor accuracy, hence discarded from the 
work. 
 

Table 2 MAPE values computed for the aggregated power consumption prediction and electricity price 

prediction for different predictor models 

Sl.No Name MAPE value for Power 

consumption prediction 

MAPE value for Price prediction 

1 Linear regression  10.97 14.83 

2 Non Linear regression  11.35 30.07 

3 ARIMA 10.05 14.02 

4 ANFIS  8.60 13.60 

5 Neural Network fitting 5.82 15.15 

6 State Space Model 22.10 
SSM takes approx. 9 h to predict 

the next 24 h power consumption 

pattern 

Excluded, since SSM takes approx. 9 h 

to predict the next 24 h power 

consumption pattern 

 

Figure 9 shows the forecasted 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 and 𝜔𝑃𝑟𝑖𝑐𝑒  curves (predicted 

power consumption in kWh versus sampling time in the next 24 h, electricity price in 

cents/Watts versus next 24 h respectively). All the six predictor outputs, e.g.: the power 

consumptions [𝜔𝐴𝑔𝑔𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
|𝐴𝑅𝐼𝑀𝐴, …, 𝜔𝐴𝑔𝑔_𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛|𝑁𝑁] are plotted on 

the same axes to give a better overview. The power consumption data are plotted on the 

axes, samples (96 intervals) versus electricity consumption in kWh. The electricity price 

data are plotted on the axes, price in cents versus hours.  

Since the main motive is to monitor and control the switching pattern at the device level 

instead of the aggregated power consumption data, the individual device data are 

considered and proceeded in this work. Accordingly, a Water pump, a Heater and a 

Cooler are considered. 



A smart scheduling algorithm for a DEMS 

 

39  

 

 

 

Figure 9. The aggregated power consumption prediction and electricity price prediction for different predictor 

models 

3.5 Prediction of device switching pattern and electricity price for Single Device 
 

In this work, the centralized and the decentralized energy management approaches are 

seen from the household appliance perspective. Hence, in DEMS the individual device is 

considered to be the end entity. Accordingly, in this thesis a device's switching pattern is  

considered rather than the aggregated household power consumption. The chosen 

flexible devices are a Water pumps, a Heater and a cooler. 

Step 1: All aforementioned 6 predictor models are employed. 
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Step 2: Each predictor model is trained with one week (TD=One week) of historical data

 H = [HLoad + HPrice + 𝜐p | 𝜐i]. This time window would help the predictor models to 

 learn the device's switching or electricity price dynamics better compared to a 

 long term TD. The predictor models are applied to predict 𝜔𝑃𝑟𝑖𝑐𝑒  and 𝜔𝐿𝑜𝑎𝑑 . 

 However, the  temperature forecast  𝜐𝑝
𝑇 is taken from the online weather 

 forecasters. The Water pump's switching pattern is forecasted, the temperature 

 dependent heater and cooler switching patterns are determined from the 

 temperature forecast, i.e. if the temperature is higher than the nominal ambient 

 temperature  (25°C), the Heater is considered OFF and the cooler is considered 

 ON and if the  temperature is lower than the aforementioned value, then vice 

 versa. The independent variables are chosen in such a way, that it improves the 

 prediction accuracy A. Accordingly, the predictor variables and the intervention 

 variables chosen are the same as that of the list mentioned in Section 3.3, 

 however the present case is for single device switching pattern. 

Step 3: Once the predictor models predicts 𝜔𝐿𝑜𝑎𝑑 and 𝜔𝑃𝑟𝑖𝑐𝑒. The sampling interval is 15 

 minutes. Therefore, the time series historical data H and the forecasted data ω 

 are available at 15 minutes sampling interval, i.e. making a total of 96 sample 

 points in every 24 h. 

                                                         𝜔𝐿𝑜𝑎𝑑  = [𝜔𝐿𝑜𝑎𝑑
𝑡 , 𝜔𝐿𝑜𝑎𝑑

𝑡+15 , 𝜔𝐿𝑜𝑎𝑑
𝑡+30 , … , 𝜔𝐿𝑜𝑎𝑑

𝑡+1440] 

                                                        𝜔𝑃𝑟𝑖𝑐𝑒  = [𝜔𝑃𝑟𝑖𝑐𝑒
𝑡 , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+15 , 𝜔𝑃𝑟𝑖𝑐𝑒
𝑡+30 , … , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+1440] 

Step 4: Once the  𝜔𝐿𝑜𝑎𝑑 and 𝜔𝑃𝑟𝑖𝑐𝑒 has been forecasted, the prediction accuracy has to be 

 evaluated. The Mean absolute percentage error (MAPE) or the Mean absolute 

 percentage deviation (MAPD), serves as a good measuring tool for prediction 

 accuracy, which is expressed in percentage and is given by Equation 37. 

Step 5: The output of the best predictor models is fed as input to phase 2. In  phase2,

   the forecasted switching pattern 𝜔𝐿𝑜𝑎𝑑 is optimized to 𝜔𝐿𝑜𝑎𝑑
∗  using MDP. This 

   will be explained in detail in section IV. 

3.6 Results 

 

The test condition for the effective evaluation of the predictor models are 

I. The predictor models adopted in this work are  

a) ARIMA 

b) Nonlinear regression 

c) Linear regression 

d) ANFIS 

e) Neural network 

f) State space models 
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II. Place of consideration: To capture the regional influence on the algorithm, the 

devices in 3 different cities or locations are considered. The considered locations 

are ANCHORAGE, PALMADELE and LITTLE ROCK of USA. At each location Water 

pump's next 24 h switching pattern is predicted and heater/cooler's next 24 h 

switching pattern is determined according to the ambient temperature. The 

process of evaluation is explained in detail in SECTION IV. 

III. Duration of training data TD: One week of device's historical switching pattern 

HLoad, temperature HTemperature and price HPrice of a chosen location were applied to 

the predictor models as input, i.e. as a set of x predictor variables and y 
interventional variables [υp1,υp2,...,υpx,υi1,υi2,...,υiy]. Irrespective of the season of 

the year and chosen location, the predicted device switching pattern is having a 

better A, when trained with one week's historical data compared to two years of 

historic data. 

IV. Sampling interval: As per the requirement, the device is controlled and 

monitored at a rate of 15 minutes, i.e. H = [HLoad, HPrice, 𝜐p | 𝜐i] data are acquired at 

a rate of 15 minutes, giving rise to 96 samples each day. Similarly, the expected 

prediction output samples are also spaced 15 minutes apart. 

 ωPrice/Load =  [𝜔𝑃𝑟𝑖𝑐𝑒/𝐿𝑜𝑎𝑑
𝑡 , 𝜔𝑃𝑟𝑖𝑐𝑒/𝐿𝑜𝑎𝑑

𝑡+15 , 𝜔𝑃𝑟𝑖𝑐𝑒/𝐿𝑜𝑎𝑑
𝑡+30 , … , 𝜔𝑃𝑟𝑖𝑐𝑒/𝐿𝑜𝑎𝑑

𝑡+1440 ] 

Output: 

Next 24 h device ON-OFF pattern for Water pump for the chosen location 𝜔𝐿𝑜𝑎𝑑 and 
electricity price 𝜔𝑃𝑟𝑖𝑐𝑒 is forecasted at 15 minute interval. 

 

3.7 Predicted and determined device switching patterns 

 

I. Water pump's predicted ON-OFF patterns  

 

Figure 10 shows the 𝜔𝐿𝑜𝑎𝑑|𝐴𝑅𝐼𝑀𝐴and the prediction error curves. As seen, the prediction 

error plot is of the order 10-15, which is almost negligible. It can be inferred that, the 

prediction accuracy is nearly ≈100%. However, the precise mean accuracy results w.r.t 

an entire year is provided in SECTION IV. The prediction error is calculated by  

 

  Prediction error = Occurred data - Predicted data 

 

II. Predicted Electricity Price  

 

Figure 11 shows the 𝜔𝑃𝑟𝑖𝑐𝑒|𝐴𝑅𝐼𝑀𝐴 (Device: Any Device, Location: chosen location - 

ANCHORAGE) and its prediction error curves. The price prediction accuracy of ARIMA is 

approximately 40%. However, the precise mean accuracy results w.r.t an entire year is 

provided in SECTION IV. 
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III. Calculated Heater ON-OFF pattern 

 

Figure 12 shows the heater's switching and temperature curves. The device will be ON if 

the temperature is greater than 77° Fahrenheit or else will remain in OFF state. 

Note: 77° Fahrenheit = 25° Celsius 

 

IV. Calculated Cooler ON-OFF pattern 

 

Figure 13 shows the cooler's switching and temperature curve. The device will be ON if 

the temperature is lesser than 77° Fahrenheit or else will remain in OFF state. 

 

Note: 77° Fahrenheit = 25° Celsius 

 

 

 

Figure 10. Water pump's switching prediction and prediction error curves for the next 24 h 
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Figure 11. Price predictions curve (Device: Any device, City: Anchorage, Predictor model: ARIMA) and its 

prediction error curve for the next 24 h 

 

 

 

 

Figure 12. Heater's switching pattern and temperature curve for the next 24 h 
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Figure 13. Cooler's switching pattern and temperature curve for the next 24 h 

 

3.8 Conclusion of Phase 1 
 

In order to achieve the primary objective of this thesis, i.e. to formulate a smart 

scheduling algorithm for DEMS, the individual device switching patterns ωLoad were 

considered as a part of the phase 1 output rather than the aggregated power 

consumption ωAgg_Power_Consumption. In both the cases the prediction results were visualized 

and analyzed to identify a predictor model that predicts the future trend with relatively 

high prediction accuracy A. The predictor models have been trained with the historical 

data H to predict the future for finite-horizon xt+p, where p is the horizon in hours, i.e. 24 

h. The H = [HLoad, HPrice, 𝜐p | 𝜐i] data is assumed to be stochastic. MAPE is a statistical tool 

that has been used to measure the error in prediction. i.e. MAPE = OC - ω. 

 

Case 1:  Prediction of the aggregated power consumption and electricity price pattern: 

The H = [HAgg_Power_Consumption + HPrice + 𝜐p | 𝜐i] data with an horizon of two years is applied 

as an input to the predictor models and the next 24 h power consumption and the 

electricity price predictions are obtained. The aggregated power consumption is stated 

as 𝑃𝑇𝑜𝑡𝑎𝑙
𝑡 , i.e. 𝑃𝑇𝑜𝑡𝑎𝑙

𝑡  =  𝑃𝑊𝐷
𝑡 + 𝑃𝐻𝑒𝑎𝑡𝑒𝑟

𝑡 + 𝑃𝐶𝑜𝑜𝑙𝑒𝑟
𝑡 + ⋯ + 𝑃𝑇𝑉

𝑡 .  Each predictor model 

manages to predict the pattern for the next 24 h, i.e. ωAgg_Power_Consumption|ARIMA,...,ωAgg_ 

Power_Consumption |NN, however, with different prediction accuracies A. The accuracy of the 

prediction algorithm A is evaluated w.r.t. the occurred data OC, i.e. the predicted 24 h 

power consumption and electricity price data (ωAgg_ Power_Consumption and ωPrice of Jan 02nd, 

2017) for each predictor model is compared against the occurred data 

(OCAgg_Power_Consumption and OCPrice of Jan 02nd, 2017) to compute A. Accuracy is given by A= 

(1-MAPE)•100. The MAPE values for different predictor models are shown in Table 2. In 
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case of the aggregated power consumption prediction, Neural Network predicts 

relatively better compared to the other models, i.e. 𝑀𝐴𝑃𝐸
𝐿𝑜𝑎𝑑|𝑁𝑁

𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐷𝑎𝑦  ≤ 𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝐴𝑁𝐹𝐼𝑆
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

 

≤ 𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝐴𝑅𝐼𝑀𝐴
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

 ≤ 𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝐿𝑖𝑛_𝑅𝑒𝑔
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

 ≤ 𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

≤  𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝑆𝑡𝑎𝑡𝑒_𝑆𝑝𝑎𝑐𝑒
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

. 

In case of the electricity price prediction, the ANFIS is predicting relatively better. 

𝑀𝐴𝑃𝐸𝑃𝑟𝑖𝑐𝑒|𝐴𝑁𝐹𝐼𝑆
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

  ≤  𝑀𝐴𝑃𝐸𝑃𝑟𝑖𝑐𝑒|𝐴𝑅𝐼𝑀𝐴
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

 ≤ 𝑀𝐴𝑃𝐸𝑃𝑟𝑖𝑐𝑒|𝐿𝑖𝑛_𝑅𝑒𝑔
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

  ≤  𝑀𝐴𝑃𝐸𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑛−𝑙𝑖𝑛_𝑅𝑒𝑔
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

 ≤ 

𝑀𝐴𝑃𝐸𝑃𝑟𝑖𝑐𝑒|𝑁𝑁
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

. Another notable fact is that the state space model in both cases, the 

electricity price and the aggregated power consumption prediction, is consuming a lot 

more time than acceptable: nearly in hours, in addition, the prediction accuracy is 

relatively bad, i.e. 𝑀𝐴𝑃𝐸𝐿𝑜𝑎𝑑|𝑆𝑡𝑎𝑡𝑒_𝑆𝑝𝑎𝑐𝑒
𝑊𝑜𝑟𝑘𝑖𝑛𝑔_𝐷𝑎𝑦

⟶ 25%. Therefore, the state space model is 

discarded for further activities and is not considered in this work. 

 

Case 2: Prediction of the device switching pattern and electricity price pattern: 

The H = [HLoad + HPrice + 𝜐p | 𝜐i] data with an horizon of one week is applied as an input for 

each predictor model and the next 24 h switching and electricity price predictions are 

obtained. In this case, the term load refers to the switching pattern of a device. Each 

predictor model manages to predict the switching pattern for the next 24 h, i.e. 

ωLoad|ARIMA,...,ωLoad|NN, however, with different prediction accuracies A. The accuracy of the 

prediction algorithm A is evaluated w.r.t. the occurred switching pattern, i.e. the 

predicted 24 h switching pattern and electricity price data (ωLoad and ωPrice of April 29th, 

2017) for each predictor model is compared against the occurred data (OCLoad and OCPrice 

of April 29th, 2017) to compute its prediction accuracy. In case of the device switching 

prediction, the prediction accuracy ALoad of each predictor model is better, i.e. Figure 10 

show that A for the considered date is approximately 100%, and MAPE is of the order 

10-15, which is negligible. However, on the other hand, the electricity price predictions 

had varied prediction accuracies A. The MAPE value of the electricity price prediction for 

different algorithms is shown in Table 2, i.e. irrespective of the device count (either for 

the aggregated power consumption or for the individual device) the same electricity 

price data is used. A good predictor model for device's switching pattern and electricity 

price predictions is decided by carrying out rigorous evaluation tests as stated in 

SECTION V. 
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4. Phase 2: Stochastic scheduling/Optimization 
 

The output of phase 1 is the un-optimized device's switching pattern and electricity 

price data, i.e. 𝜔𝐿𝑜𝑎𝑑 and 𝜔𝑃𝑟𝑖𝑐𝑒. In phase 2, an MDP problem is employed to achieve the 

desired output, 𝜔𝐿𝑜𝑎𝑑
∗ . The desired output is: optimized ON-OFF scheduling pattern for 

next 24 h, considering several aspects such as temperature (if device is temperature 

dependent), the seasonality SEN, the maximum allowed device waiting time 𝑊𝐷
𝑀𝑎𝑥

, the 

maximum device interruptions possible in a day 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥

, total power requirement in a 

day 𝑃𝐷
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

, RTP ζt, the next 24 h CoEC 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 and the total device execution time 

left  TExe. This section states the following  

1. The theory of Markov chains and MDP. 

2. The methods for obtaining the optimum policies with precise mathematical 

models. 

3. The outline of the MDP implementation. 

4. The simulations of phase 2 in detail and the considered transition probability P 

and reward function R. 

5. Conclusion. 

 

4.1 Introduction to Markov Decision theory  
 

Markov decision theory has a wide range of applications, such as inventory control, 

computer science, resource allocation etc. A Markov chains is a stochastic process, in 

which the probabilistic occurrence of next state is assumed to be dependent on current 

state alone, instead of the past states and this is called Markov process. The two 

fundamentals of Markov processes are the states and state transitions. The system states 

are assumed to be a random variable indicating the property of the system at an instant 

and the state transition is the change in system state at a given instant. Consider a set of 

states S={s1,s2,...,sn}, at time t, the process starts from one of the states si and jumps to 

another sj in the next time step t+1. This transition probability is captured by pij or P(S). 

The Markov process is broadly classified into two categories, i.e. continuous-time 

Markov process and discrete-time Markov process. A case in which the states are 

random variables and time between state transitions is fixed, is called discrete-time 

Markov process. Similarly a case in which both states and time between state transitions 

are random variables is called continuous-time Markov process [12].  

Discrete-time Markov process: 

Any sequence of system states, in which the probabilistic occurrence of next state is 

assumed to be dependent on current state alone, instead of the past states and the time 

between state transitions is assumed to be fixed is called Discrete-time Markov process. 

This technique is considered a way to include stochasticity or randomness in decision 

making. Discrete-time Markov process is a stochastic process, which is discrete in both 

time and space. 
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P(St+1 = lt+1 | St =lt, St-1 = lt-1,...,S0=l0) = P(St+1 = lt+1 | St =lt),  t = 0,1, ...                     [38] 

Where, 

 St ,t = {0,1,2,...} : Sequence of system states in a discrete time stochastic  

   process with a discrete state space S. 

 l0,.....lt+1 : All possible values. 

 t  : Discrete time description. 

Continuous-time Markov process: 

Continuous-time Markov process is seen to be a generic model, since time is allowed to 

be continuous t ≥ 0. The continuous-time Markov process is simply a discrete-time 

Markov process, but in which the state transitions can happen at any time, i.e. the time 

between state transitions is assumed to be a random variable. Transition rate forms the 

central concept in continuous-time Markov process. 

  `             P(S(t + Δt = l| St =l))= 1 - vlΔt + o(Δt), t ≥ 0                   [39] 

Where, 

 St ,t ≥0 : Sequence of system states in a discrete time stochastic process  

  with a discrete state space S. 

 o(Δt)  : is negligibly small compared to Δt when Δt→0. Therefore vlΔt +  

  o(Δt) is the probability that the process moves to another state in Δt 

  time units. 

 l0,...,lt+1 : All possible values. 

vl : Time interval between the state transitions. l ϵ Z are bounded. 

Since the next state is a function of transition probability T. v1T is the transition rates of 

continuous Markov process. 

  P(S(t + Δt = k| St =l) = v1TΔt + o(Δt),     k≠l            [40] 

 

Markov decision process (MDP) 

The theory of MDP is a theory of controlled Markov chains [24]. In Markovian process, it 

is assumed that the next state could be predicted by present state alone, i.e. the next 

state's prediction using present state is assumed to be same as prediction done using 

complete available historic data. The theory of MDP could be used to solve many real 

world problems, out of which DEMS is an example. In the real world scenarios or the 

environment, there could be several possible next steps. The MDP helps to choose the 

optimal action or the optimal control decision that can lead to an optimal step/state. 

MDP is employed when the state transition is partly controlled by the system user. MDP 

contains Markov chains in addition to the action space and reward functions. Action 

space captures possible next action and, the reward function will influence the decision 

by adding weighting factors to output an optimal policy. At any given instant of time the 
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process is in state S. Each state in the process has several available actions a. If the action 

is chosen randomly the resulting next state is S' and this state S' has a corresponding 

reward function Ra(S, S’). Every state has a reward function corresponding to the action 

from which it resulted. Thus the next state S' is dependent on the present state S and 

chosen action a, an action which is allowed in state S. This state transition is denoted by 

Pa(S, S’). Similar to Markov process the MDP could be broadly categorized as discrete-

time Markov decision process and continuous-time Markov decision process. 

MDP contains  

a) State space: Captures the possible states of the stochastic process. It is 

  denoted by 'S'. In MDP each state has state value called Vi(s). The 

  state value could be calculated by Bellman's equation, i.e. Equation 

  46. Accordingly from each state, there could be many possible  

  actions which leads to a different state. 

b) Action space: The allowed actions at each state are captured. It is denoted by 

  'A'. Different actions lead to different states. 

c) Transition probability: The transition between states could be captured by 

  transition probabilities. It is denoted by T(S,a,s') or P(S,a,s'). Which 

  represents the conditional probability of next state S' occurring, 

  given the present state S and action a. 

 P(St+1 = s' | St =st, At = at, St-1 = st-1,At-1,...,S0=s0) = P(St+1 = s' | St =st, At = at) 

The above representation signifies the fact that the next state is 

dependent on the current state, i.e. the predicted next state having 

all the previous states and actions into consideration is no different 

from the next step predicted with the present state and 

corresponding action. 

d) Reward function: These are the influencing factors to decide on an optimized

  action or step. It is denoted by R(S,a,s') or just R(S) or R(s'). Each 

  chosen action results in corresponding reward R(S), which is  

  assigned to the next state once the decision is executed. 

e) Discount factor: The reward function might lose their reward value over a 

  time, this is captured in discount factor. It is denoted by Υ. It is the 

  parameter that decides amount of priority assigned to immediate 

  rewards compared to later rewards. 

 

Discrete-time Markov decision model 

The stochastic system {Zt, t = 0, 1, 2...} represent a discrete-time Markov decision model.  

The sequence of system states belongs to a discrete state space. The time t corresponds 

to a state transition interval or system review instances and are identical. At each state 

of the system, the allowed set of actions Al, l ϵ Z is assumed to be finite. For each 

executed action the resulting state obtains a corresponding reward R(S). For the action 

executed, the state transition probability function is given by plk(a). The state transition 

https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Discrete_time
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probability at any state considering all the correspondingly allowed actions should 

satisfy 

     ∑ 𝑝𝑙𝑘 = 1, 𝑙 𝜖 𝑍Z
𝑘𝜖𝑍                             [41] 

Such a system is called Discrete-time Markov decision model. The main aim is to obtain 

the stationary policy π defining optimal actions at every state. This policy π can be found 

by employing techniques like value-iteration algorithms or policy-iteration algorithms. 

The resulting policy π* has the average reward optimal for each policy π. 

     R(π*) ≥ R(π)                 [42] 

 Where, 

    𝑅(𝜋) = ∑ 𝑟𝑘(𝜋)𝑄𝑘(𝜋), 𝑘 𝜖 𝑍Z
𝑘𝜖𝑍                [43] 

𝑄𝑘 defines the steady state probabilities, i.e. a steady state distributions indicates that a 

limiting distribution is reached where at a state si, the transition probability to an 

accessible state sj, at that specific instant t and in the future t+x is same. With an 

assumption that for a chosen policy π a state s exists, which can be reached from any 

state, a normalized steady state probabilistic equation could be defined for any policy. 

    𝑄𝑘(𝜋) = ∑ 𝑝𝑙𝑘(𝜋)𝑄𝑘(𝜋), 𝑘 𝜖 𝑍Z
𝑘𝜖𝑍                [44] 

            ∑ 𝑄𝑘(𝜋)  = 1Z
𝑘𝜖𝑍                  [45] 

 

Continuous-time Markov decision model 

The stochastic system {Zt, t ≥ 0} represents a continuous-time Markov decision model.  

Continuous-time Markov decision model is also referred as semi-Markov decision 

process. The time t corresponds to the system review instances and are not identical i.e. 

the states and the state transition interval are stochastic. At each state of the system, 

their exists, allowed set of actions Al, l ϵ Z assumed to be finite. For each executed action 

the resulting state obtains a corresponding reward R(S). The main aim is to obtain the 

stationary policy π defining optimal actions at every state. This policy π could be found 

by employing an algorithm such as value-iteration algorithm and policy-iteration 

algorithm. Continuous time value iteration algorithm is derived from discrete time value 

iteration algorithm by assuming identical average transition time τ'. 

Methods for obtaining optimum MDP policies are: 

1) Policy iteration algorithm:  

In policy iteration the value of the policy is evaluated, i.e. the Vπ(s) is evaluated. For any 

given new policy the policy value is  

 

                  ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛶𝑉𝜋(𝑆))
n

𝑆′     [46] 

  Where,  

                                            𝑇(𝑠, 𝜋(𝑠), 𝑠′) = 𝑝𝑙𝑘(𝜋′):Transition probability for a selected action. 
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                                           𝜋′         𝐴𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 𝑤𝑖𝑡ℎ 𝑅(𝜋 ∗) ≥ 𝑅(𝜋). 

1) An initial arbitrary policy is chosen. 

2) For the chosen policy the policy value is determined by equation. 

                                     𝑉𝜋 (𝑠) =  ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛶𝑉𝜋(𝑆))
n

𝑆′    [47] 

3) Find an action a at each state such that the value of the policy is maximized. 

maxaϵA {∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛶𝑉𝜋(𝑆))
n

𝑆′ }   [48] 

 

If Vπ'(S) ≠ Vπ(S) then go to step 2 and repeat the computation with π' as π. This process is 

iterated until the policy converges to π*. The Vπ(S) is the optimal policy if Vπ'(S) = Vπ(S) 

and correspondingly the π' is termed as π* and R(π') is termed as R(π*). 

2) Value iteration algorithm: 

Instead of solving linear equations, this algorithm adopts dynamic programming to 

recursively evaluate the value Vi(S), where i is iteration. The search is for the optimal 

policy π*, which gives optimal actions at each state. The solution to find the optimal 

policy or action sequence is provided by Bellman equation stated in Equation 49. This 

equation is used recursively to arrive at the optimal value. V(s') corresponds to the value 

of the current state and Vi+1(s) is value of the next state, according to Bellman equation. 

This is calculated for all the possible actions at each state. As a result the optimum state 

value: Vi+1(s), is opted. 

                               𝑉𝑖+1(𝑠)⃪ maxa ∑ 𝑇𝑎(𝑠, 𝑠′) (𝑅𝑎(𝑠, 𝑠′) +  𝛶𝑉𝑖(𝑠′))
n

𝑆′
               [49] 

1) To start the algorithm, initialize Vi(S) = 0, where i=0. 

2) Find a policy π which maximizes the R.H.S7 of the Equation 49 for all states S. 

3) Compute the convergence or the required relative accuracy limits. For an optimal         

policy the average reward �̅�(π) = 𝑉𝑖(𝑆) − 𝑉𝑖+1(𝑆) is assumed to be within the bounds. 

 

                                       mn = min{𝑉𝑖(𝑆) −  𝑉𝑖+1(𝑆)}                [50] 

                                        Mn = max{𝑉𝑖(𝑆) −   𝑉𝑖+1(𝑆)}                  [51] 

 

If ϵmn ≥ Mn-mn ≥ 0, where ϵ determines the required relative accuracy, stop the algorithm 

with policy π' when the difference approaches the maximum reward from the system. If 

not go to the step 2. 

 

 

                                                           
7R.H.S = Right hand side 
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4.2 Outline of  the MDP Algorithm 

 

 

 

 

 

 

 

 

Value Iteration Policy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suggested approach:  

In this thesis, a Value iteration algorithm is adopted. In case of a Water pump the next 15 

minute's forecasted device switching 𝜔𝐿𝑜𝑎𝑑   and in case of heater or cooler the 15 

minute's determined device switching and 15 minute's forecasted electricity price 𝜔𝑃𝑟𝑖𝑐𝑒 

(irrespective of device type) is applied as input to MDP. MDP outputs or determines, the 

optimal switching state of the device for next 15 Minutes π*. The MDP is reformulated 

and value iteration policy is run for every sampling instant (15 Minute interval). This 
process is repeated for all 96 samples to obtain 𝜔𝐿𝑜𝑎𝑑

∗  = [𝜋1
∗, 𝜋2

∗, 𝜋3
∗,...,𝜋96

∗ ]. The 

optimization is carried out based on 6 primitive parameters and an additional optional 

parameter, i.e. temperature (If temperature dependent device: for e.g.: Cooler/Heater). 

These parameters along with transition probability T(s,a,s') is applied as input to the 
value iteration policy to obtain 𝜔𝐿𝑜𝑎𝑑

∗ , i.e. the optimum device switching 𝜔𝐿𝑜𝑎𝑑
∗  is 

obtained by recursively running the Bellman equation. The reward components are 

 

Probability function 
T(s,a,s') 

Reward   function 
R(s,a,s') 

 

C2 

WD/𝑊𝐷
𝑀𝑎𝑥 

Temperature 

TExe 

DStart 

α 

C1 

State jumps(1/α) 

 

Discount (ϒ)= 1 
Epsilon (ϵ)  = 0.01 

 
 

Compute a bound for the number of iterations 

Applies the Bellman operator on the value function 

Vk+1(S) = maxa𝛴sT(s,a,s')[R(s,a,s') + ϒ • ϵ • Vk(S')] 

(VK+1 -VK) < ϵ  

Iteration < Max Iteration 

Optimal Policy π* (ON-OFF state for next 15 Min) 

) 

Yes 

No 

Yes 

No 
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a) Price for next 1 hour (C1)         

b) Electricity price 𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡 at a specific instant of time t (C2) 

c) Total device execution time left (TExe)  

d) Present waited time (WD/𝑊𝐷
𝑀𝑎𝑥) 

e) Alpha: state jumps (𝛼) 

f) Checks, if device needs to be turned ON  that day (DStart) 

 

Inputs Applied: 

 

States (S): The cost of energy consumption is dynamically divided equally into 5 states. 

 

Step1:  

 Obtain the cost of energy consumption for the next 24 h: 96 samples-having 15 

 minutes interval. 

    𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

= Real Time Price • Load  =  ζt • 𝜔𝐿𝑜𝑎𝑑 

    𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

= {set of CoEC of next 24 h} = ωPrice                     [52] 

Step2:  

 The maximum in 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦 

 is divided by 5 to derive the step size. This step size 

 defines the building block of the T(s,a,s'), i.e. the stochasticity of the random 

 variable 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 is recorded within a state probability transition function. 

 State space captures every day's price dynamics effectively, since Max 

 ( 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

) varies every day with ωPrice. 

    Stepsize = Max ( 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

) / 5                            [53] 

Transition/Probability function (T(s,a,s')):  The states space is dynamically formed 

 for each day by dividing the  𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 range into 5 equal steps. The difference 

 between the successive states is equal to the Stepsize. The transition probability 

 is a p x p x q matrix, where p is the number of states and q is the number of 

 possible actions a. 

 

    T(s,a,s') =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑆 𝑡𝑜 𝑆′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑆
            [54] 
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Typical example: In this case, the transition probability is a 5 x 5 x 2 matrix, i.e. 5 states 

[S1, S2, S3, S4, S5]  and 2 actions [ON, OFF]. 

 

OFF       ON  

     

 

 
Reward function (R(s,a,s')):   
 

Reward function helps to choose an optimal action. Reward function depends on the 

current state S and the actions Al, l ϵ Z, chosen at that sate. MDP provides an optimal 

switching schedule for the next 15 Minutes, based on 7 parameters or 7 tuples that 

constitute the reward function, as proposed in Equation 59. 

 

1. Reward component 1 (𝛼)- Alpha or State Jump factor [6] 

By this reward component a state transition or jump from a higher 

CoEC state si to a lower CoEC state sj is assigned a better reward 

than a jump from lower to higher, where i > j. Where state si is the 

initial state and sj is the next state. The index value ranges from 1 to 

5, as the length of state space is 5. As a consequence, an action 

which causes the state transition from higher to lower is preferred 

and chosen. 

                                 𝛼 =  
𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑆𝑖

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑆𝑗
. 

2. Reward component 2 (C1)- Cost for next 1 hour  

This reward component observers the next 1hour electricity price 

pattern and help to decide an optimal action. When this optimal 

actions is taken it leads to reduced  𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. The standard 

deviation Hstd(X) is computed for the predicted price, ωPrice. If any 

sample in next 1 hour's predicted electricity price ωPrice
1 h =

 [ωPrice
t=0 , ωPrice

t+15 , ωPrice
t+30  , ωPrice

t+45 ] is higher than the Hstd(X), this reward 

component affects the reward function such that the device 

chooses to remain turned OFF for the next one hour, and chooses to 

remain ON when all the samples are below Hstd(X).  

     Hstd(X)  = μ  +  std(X)                 [55] 

   C1 = Σ4 {True( [𝜔𝑃𝑟𝑖𝑐𝑒
𝑡=0 , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+15 , 𝜔𝑃𝑟𝑖𝑐𝑒
𝑡+30  , 𝜔𝑃𝑟𝑖𝑐𝑒

𝑡+45 ] < Hstd(X)}                      [56] 
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  Where, 

μ: Mean of the Forecasted price data: set of 96 samples, each sample 

 at15 min interval. 

std(X) : Standard Deviation of the Forecasted price data: set of 96 samples, 
 each sample at 15 min interval. 
 

3. Reward component 3 (C2) - Electricity price 𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡 at a specific instant of time t 

This reward component observers the electricity price at that 

specific instant of time t and help to decide an optimal action. 

When this optimal actions is taken it leads to reduced  𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. 

The predicted electricity price at successive time instant t, 𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡

 is 

normalized as per Equation 57. Lower the 𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡

 better the reward, 

as a consequence, the device chooses to remain turned ON. On the 

other hand the device chooses to remain turned OFF as the 𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡  

approaches the day's high RTP or 1 (since the electricity price is 

normalized). 

     𝐶2 =
𝜔𝑃𝑟𝑖𝑐𝑒 

𝑡 − 𝑃𝑀𝑖𝑛

𝑃𝑀𝑎𝑥−𝑃𝑀𝑖𝑛
                             [57] 

 Where, 

  𝜔𝑃𝑟𝑖𝑐𝑒 
𝑡

 : Electricity price at the current sampling time. 

  PMin : Minimum electricity price of the day:                                                       
     Min{Set of prices: 96 samples} = min{𝜔𝑃𝑟𝑖𝑐𝑒  } 

  PMax : Maximum electricity price of the day:   
     Max{Set of prices: 96 samples} = max{𝜔𝑃𝑟𝑖𝑐𝑒  } 

4. Reward component 4 (TExe) - Device execution time left  

This reward component assigns lower reward during the devices 

initial execution time, thereby less curtailment on its operation. On 

the other hand, this reward component forces the device to remain 

turned ON, when the device approaches its required execution 

time, thereby allowing the device to execute till the completion of 

specific task. 

   TExe = Required execution time - Elapsed execution time. 

5. Reward component 5 (WD/𝑊𝐷
𝑀𝑎𝑥) - Present waited time [6] 

A reward component for waiting time of the device. The reward 

increases as the device's present waiting time approaches the 

device's maximum waiting time. The reward function is the ratio 

of the WD/𝑊𝐷
𝑀𝑎𝑥, where 𝑊𝐷

𝑀𝑎𝑥  is the maximum device waiting time 

and WD is the device present waited time. The purpose of this 



A smart scheduling algorithm for a DEMS 

 

55  

 

reward component is to prioritize the device to turn ON when the 

device is delayed more. 

6. Reward component 6 (DStart)- Checks, if device needs to be turned ON that day. 

This reward component scales the reward function with '1' if at all 

the device is required to be scheduled/ turned ON that  particular 

day or else scales with '0'. As a consequence the scenario in which 

the devices being turned OFF at weekends are covered. 

7. Reward component 7 (Temperature) - Temperature (If temperature dependent 

device). 

Depending upon the chosen device, the temperature factor is 

employed to scale the reward function. In case of a washing 

machine, the temperature factor is not used. In case of a heater, the 

operation is inversely proportional to temperature, i.e. the reward 

component scales the reward function with higher value to turn the 

device ON as the temperature reduces and forces the device to turn 

OFF when temperature crosses 25°C. In case of cooler it is directly 

proportional to temperature. The scaling factor is normalized to '1' 

as shown in the Equation 58. 

   𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑡 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑖𝑛

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑥−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑖𝑛
               [58] 

Where, 

 𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
𝑡        : Temperature at the current sampling time. 

 TemperatureMin    : Minimum of entire day's temperature 

  Min{Set of temperature: 96 samples} = min{𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒} 

 TemperatureMax     : Maximum of entire day's temperature 

  Max{Set of temperature: 96 samples} = max{𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒} 

Reward function (R(s,a,s')):   
 

 
             (𝑅(𝑠, 𝑎, 𝑠′)) = 𝛼 •  𝐶1 • 𝐶2 •  𝑇𝐸𝑥𝑒 •  

𝑊𝐷

𝑊𝐷
𝑀𝑎𝑥

 •  𝐷𝑆𝑡𝑎𝑟𝑡 •  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒        [59]      

  Where, 

   𝛼                        : State jump factor. 

   C1  : Cost for next 1 hour.    

   C2  : How Low is the present cost (This very Moment).  

   TExe  : Device execution time left.   

   WD/𝑊𝐷
𝑀𝑎𝑥 : Present waited time. 

   DStart  : Checks, if device needs to be turned ON that day. 

   Temperature : Temperature (If Temp Dependent Device).  
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4.3 Conclusion of Phase 2 

 

The required device scheduling is achieved by considering entire next day's peak 

electricity price, temperature and the device specific parameters. A simulator is 

designed for the ease of analysis and performance evaluation. Figure 14 shows the 

simulator, where the selections of training dates, locations, device types and several 

other features are provided e.g.: performance evaluation, display of predictor input and 

output plots etc.  

 

Figure 14. 'Smart device Scheduler'- The Graphical User Interface (GUI) 

Optimization of the Water pump switching pattern: 

Figure 15 shows a snapshot of the input and output plots of the proposed MDP. All data 

shown are normalized to 1. The upper axes contain the un-optimized ON-OFF patterns 

(Forecaster output) of a Water pump  𝜔𝐿𝑜𝑎𝑑|𝑁𝑜𝑟𝑚, normalized electricity price of city 

Anchorage 𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚, the daily mean value of normalized electricity price 𝜇(𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚) 

and the standard deviation for normalized electricity price Hstd(X) where X= (𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚). 

2nd axes shows the optimized switching pattern for next 24 h, 𝜔𝐿𝑜𝑎𝑑
∗ , i.e. the device 

switching pattern if followed results in a lower CoEC, 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. In the second plot, the 

black markers in the graph indicate that, the device remains turned OFF when the prices 

overshoot above the standard deviation (as shown in the first plot). 

Optimization of the heater switching pattern: 

Figure 16 shows a snapshot of the input and output plots of MDP. All data shown are 

normalized to 1. Upper axes shows the optimized ON-OFF patterns for next 24 h, if 

followed results in a lower CoEC, 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. The 2nd axes contains the un-optimized ON-

OFF patterns of a heater, normalized electricity price of city Anchorage 𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚, mean 

value of normalized electricity price 𝜇(𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚) and standard deviation of normalized 
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electricity price Hstd(X) where X= (𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚). In the first plot, the black markers in the 

graph indicate that, the device remains turned OFF when the prices overshoot above the 

standard deviation and/or when an ambient temperature is higher than 25° C too (as 

shown in the second and third plot). 

Optimization of the cooler switching pattern: 

Figure 17 shows a snapshot of the input and output plots of MDP. All data shown are 

normalized to 1. Upper axes shows the optimized ON-OFF patterns for next 24 h, that 

which if followed result in a lower CoEC 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. The 2nd axes contains the un-

optimized ON-OFF patterns of cooler, normalized electricity price of city Anchorage 

𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚, mean value of normalized electricity price 𝜇(𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚), standard deviation 

of normalized electricity price Hstd(X) where X= (𝜔𝑃𝑟𝑖𝑐𝑒|𝑁𝑜𝑟𝑚). In the first plot, the black 

markers in the graph indicate that, the device remains turned OFF when the prices 

overshoot above the standard deviation and/or when an ambient temperature is lower 

than 25° C too (as shown in the second and third plot). The scheduled output in axes 1 is 

shifted slightly towards left than the forecasted switching because it’s capable of 

tracking high ambient temperatures and accordingly schedule the device8. 

 

 

Figure 15. Optimized switching for Water pump: Forecast Date (April 29th of 2015) 

                                                           
8 The axes 1 and 3 should be observed keenly. Irrespective of the cooler's/heater's switching schedule, the MDP 

takes a valid decision and reschedules by tracking the high values of temperature in a day. 
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Figure 16. Optimized switching for Heater: Forecast Date (April 29th of 2015) 

 

 

Figure 17. Optimized switching for Cooler: Forecast Date (April 29th of 2015) 
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5. Performance Evaluation 
 

To show the good performance of the proposed algorithm, it is essential to evaluate the 

quality of algorithm through a solid performance evaluation. A simulator is designed, 

that helps to select different predictor algorithms, different training dataset (various 

start-end dates and respective forecasting date), different cities (warm city, colder city, 

moderate city) and different device type (Water pump, Heater and Cooler). Along with 

these selection facilities, the simulator also provides several other features that help to 

carry out effective performance evaluation. The performance evaluation investigates the 

following aspects. 

1. The prediction accuracy A of each predictor model. 

2. The best-fit predictor model for the electricity price prediction. 

3. The best-fit predictor model for the device switching prediction. 

4. The optimization of device switching schedule using MDP, i.e. the load shift 

achieved by considering peak price in a day and many other aspects, as 

compared to a schedule without MDP. 

 

5.1 Prediction Accuracy 
 

The prediction accuracy is evaluated by verifying the next 24 h forecasted data ω with 

the next 24 h occurred data OC. The training period considered is one week for each 

predictor model, irrespective of the chosen city and device. The forecasted data for an 

entire year, i.e. for 365 days 𝜔𝐷1, 𝜔𝐷2, 𝜔𝐷3, … , 𝜔𝐷365, is obtained by sliding training 

window/period (one week) H=[𝐻𝐿𝑜𝑎𝑑
𝐷−1 ,...,𝐻𝐿𝑜𝑎𝑑

𝐷−7 ,𝐻𝑃𝑟𝑖𝑐𝑒
𝐷−1 ,...,𝐻𝑃𝑟𝑖𝑐𝑒

𝐷−7 ,𝜐𝑝
𝐷−1,...,𝜐𝑝

𝐷−7| 𝜐𝑖
𝐷−1, … , 𝜐𝑖

𝐷−1] 

over a year and it is compared with the occurred data of the year 

2015,  𝑂𝐶𝐷1, 𝑂𝐶𝐷2, … , 𝑂𝐶𝐷365, where D refers to a specific forecast date 1 ≤ D ≤ 365. 

The prediction accuracy is evaluated for various combinations of test conditions such as. 

 Different City (Anchorage, Little Rock and Palmadel). 

 Price or device switching pattern prediction. 

 Different time within a year. 

 Different predictor models. 

Time considered: The year 2015 (Each day of the year 2015) 

For example: The prediction accuracy of the predictor model ARIMA, is captured for an 

entire year, for the chosen city Palmadel and for the chosen device Water pump. 
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Device : Water pump 

Table 3. Prediction accuracy evaluation in case of Water pump 

Water  

pump 

ANKORAGE LITTLE_ROCK PALMADEL 

PRICE LOAD PRICE LOAD PRICE LOAD 

ARIMA  Mean:42.48 

SD     :72.72 

Mean:97.94 

SD      : 115.76 

Mean:42.84 

SD     :72.90 

Mean:.97.94 

SD      : 115.76 

Mean:42.73 

SD     :72.13 

Mean:.97.94 

SD      : 115.76 

Non Linear 

Regression 

Mean:78.91 

SD     :109.79 

Mean:97.92 

SD      : 115.83 

Mean:78.91 

SD     :109.79 

Mean:97.92 

SD      : 115.83 

Mean:78.91 

SD     :109.79 

Mean:97.94 

SD      : 115.86 

Linear 

Regression 

Mean:45.05 

SD     :75.07 

Mean:97.80 

SD      : 115.90 

Mean:44.81 

SD     :74.85 

Mean:97.82 

SD      : 115.92 

Mean:45.27 

SD     :75.27 

Mean:97.80 

SD      : 115.90 

ANFIS Mean:42.41 

SD     :70.51 

Mean:106.70 

SD      : 143.63 

Mean:42.41 

SD     :70.51 

Mean:106.70 

SD      : 143.62 

Mean:42.41 

SD     :70.51 

Mean:106.40 

SD      : 131.70 

Neural 

Networking 

Mean:54.30 

SD     :84.95 

Mean:97.36 

SD      : 116.31 

Mean:52.61 

SD     :83.39 

Mean:97.28 

SD      : 115.63 

Mean:52.36 

SD     :82.86 

Mean:98.51 

SD      : 116.65 

 

Device: Heater 

Note: In case of Heater as the chosen device, only the electricity price is predicted. 

Table 4. Prediction accuracy evaluation in case of Heater 

Heater ANKORAGE LITTLE_ROCK PALMADEL 

PRICE LOAD PRICE LOAD PRICE LOAD 

ARIMA Mean:42.48 

SD     :72.72 

- Mean:42.84 

SD     :72.90 

- Mean:42.73 

SD     :72.13 

- 

Non Linear 

Regression 

Mean:78.91 

SD     :109.79 

- Mean:78.91 

SD     :109.79 

- Mean:78.91 

SD     :109.79 

- 

Linear 

Regression 

Mean:45.05 

SD     :75.07 

- Mean:44.81 

SD     :74.85 

- Mean:45.27 

SD     :75.27 

- 

ANFIS Mean:42.41 

SD     :70.51 

- Mean:42.41 

SD     :70.51 

- Mean:42.41 

SD     :70.51 

- 

Neural 

Networking 

Mean:54.30 

SD     :84.95 

- Mean:52.61 

SD     :83.39 

- Mean:52.36 

SD     :82.86 

- 
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Device: Cooler 

Note: In case of Cooler as the chosen device, only the electricity price is predicted. 

Table 5. Prediction accuracy evaluation in case of Cooler 

Cooler ANKORAGE LITTLE_ROCK PALMADEL 

PRICE LOAD PRICE LOAD PRICE LOAD 

ARIMA Mean:42.48 

SD     :72.72 

- Mean:42.84 

SD     :72.90 

- Mean:42.73 

SD     :72.13 

- 

Non Linear 

Regression 

Mean:78.91 

SD     :109.79 

- Mean:78.91 

SD     :109.79 

- Mean:78.91 

SD     :109.79 

- 

Linear 

Regression 

Mean:45.05 

SD     :75.07 

- Mean:44.81 

SD     :74.85 

- Mean:45.27 

SD     :75.27 

- 

ANFIS Mean:42.41 

SD     :70.51 

- Mean:42.41 

SD     :70.51 

- Mean:42.41 

SD     :70.51 

- 

Neural 

Networking 

Mean:54.30 

SD     :84.95 

- Mean:52.61 

SD     :83.39 

- Mean:52.36 

SD     :82.86 

- 

 

Table 3 shows the device switching prediction accuracy evaluation results of Water 

pump, for each city and for each predictor model under consideration. The predictors 

trains with one week of H, w.r.t specific forecast date. For obtaining the performance 

evaluation of each day of an year, this training period is slid over a year, so as to predict 

all 365 days of year H = [𝐻𝐿𝑜𝑎𝑑
𝐷−1 ,...,𝐻𝐿𝑜𝑎𝑑

𝐷−7 ,𝐻𝑃𝑟𝑖𝑐𝑒
𝐷−1 ,..,𝐻𝑃𝑟𝑖𝑐𝑒

𝐷−7 , 𝜐𝑝
𝐷−1,...,𝜐𝑝

𝐷−7| 𝜐𝑖
𝐷−1, … , 𝜐𝑖

𝐷−7], where 

D refers to specific forecast date 1 ≤ D ≤ 365. Each day 𝜔𝐿𝑜𝑎𝑑 and 𝜔𝑃𝑟𝑖𝑐𝑒 results are 

compared with the occurred data 𝑂𝐶𝐿𝑜𝑎𝑑 and 𝑂𝐶𝑃𝑟𝑖𝑐𝑒 . As per Equation 37, the MAPE 

value is calculated for each day. Accuracy in percentage is calculated by A = (1-MAPE) 

•100. Accordingly, 365 accuracy samples are computed, each corresponding to each day 

of the year D, where 1≤ D ≤ 365. A Mean value in the table represents the mean of 

accuracies over an entire year in percentage 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

. A standard deviation value 

 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

= 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

+  𝑠𝑡𝑑(𝐴𝐷1, 𝐴𝐷2, 𝐴𝐷3, … , 𝐴𝐷365)  in the table represents the 

deviation (over a year) from the mean accuracy value and lower standard deviation 

value infers a better prediction. For 𝜔𝐿𝑜𝑎𝑑 the mean of A over an year , 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

 value is 

greater than 97% and 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

 is of range 15%-20%, irrespective of chosen city 

and chosen predictor model, except ANFIS, i.e. except ANFIS all other predictor models 
are competitively predicting well, i.e. e.g.: 𝐴𝐿𝑜𝑎𝑑 |𝐴𝑅𝐼𝑀𝐴 ≈ ⋯ ≈ 𝐴𝐿𝑜𝑎𝑑 |𝑁𝑜𝑛_𝐿𝑖𝑛_𝑅𝑒𝑔. For 

𝜔𝑃𝑟𝑖𝑐𝑒, due to its stochastic behavior, it is difficult for any chosen predictor model to 

predict with 100% accuracy. Correspondingly, the 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

 and 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

varies 

drastically. Table 4 and Table 5 shows the prediction accuracy evaluation results for 

Heater and Cooler respectively. For the device type Heater or Cooler, the device 

switching patterns are not predicted but are determined from the daily temperature 
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curves 𝜔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. Only the 𝜔𝑃𝑟𝑖𝑐𝑒 evaluation is tabulated in Table 4 and Table 5. The 

ambient temperature to be maintained by heater or cooler is at 25° C as briefed in 

SECTION III. 

 

Figure 18. Device switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ARIMA)

 

Figure 19. Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ARIMA) 

Figure 18 and Figure 19 shows the plot of prediction accuracies 𝐴𝐿𝑜𝑎𝑑|𝐴𝑅𝐼𝑀𝐴 and 

𝐴𝑃𝑟𝑖𝑐𝑒|𝐴𝑅𝐼𝑀𝐴 respectively. The considered test case is for the device type Water pump, 
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the chosen predictor model is ARIMA and the chosen city is Anchorage. The plots of 

prediction accuracies, corresponding to various test cases is provided in Appendix I. 

Since the year 2015 alone is considered, there exist no sufficient training data to predict 

each day of the 1st week, hence in all these plots, we observe the highest sampling index 

in X-axis as 357 instead of 365. The 1st week of the year serves as an initial training 

period for predicting device switching and electricity price on Jan 8th of 2015. The plots 

contain accuracies in percentage i.e. the plot contains ALoad, APrice, the mean accuracy 

over the year 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

 and the standard deviation over the year 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

. 

Table 3, Table 4 and Table 5 shows that, it is difficult to select the best predictor model 

that fairs best in all test cases, as certain predictor model predict better than its peer in 

few test conditions but do not performs well in the rest of test conditions. These 

selections are based on the 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

, MAPE, and respective 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

values, i.e. 

based on these values the predictor models are assigned with various priorities. The 

closer the yearly mean of device switching prediction accuracy to 100%, 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

⟶ 

100% and lesser the standard deviation value 𝐻𝑠𝑡𝑑(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
𝑦𝑒𝑎𝑟

⟶ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑦𝑒𝑎𝑟

, higher the 

priority assigned to that predictor model for the corresponding test case. An example is 

shown in Table 7 for the load/ device's switching prediction evaluation of each predictor 

model for the device type Water pump and the chosen city, Anchorage. In case of price 

prediction, the prediction error is considered as an evaluation parameter, i.e. the lower 

the Mean of MAPEs 𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

⟶0% and the lower the standard deviation value 

𝐻𝑠𝑡𝑑(𝑀𝐴𝑃𝐸) 
𝑦𝑒𝑎𝑟

⟶  𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

 the higher the priority. An example is shown in Table 6 for price 

prediction evaluation of each predictor model for the device type Water pump and the 

chosen city, Anchorage. Similarly, the task of priority assignment is carried out for all 

other test cases and Table 8 shows the summary of evaluation, considering different 

cities and different device types. From Figure 20, it is evident that ARIMA is a clear 

winner of the prediction accuracy evaluation. 

Table 6.Electricity Price prediction evaluation  Table 7. Load prediction evaluation 

Washing 

Machine 

ANKORAGE 

Load Priority 

Assignment 

ARIMA Mean:97.94 

SD      : 115.76 

5 

Non Linear 

Regression 

Mean:97.92 

SD      : 115.83 

4 

Linear 

Regression 

Mean:97.80 

SD      : 115.90 

3 

ANFIS Mean:106.70 

SD      : 143.63 

1 

Neural 

Networking 

Mean:97.36 

SD      : 116.31 

2 

Washing 

Machine 

ANKORAGE 

PRICE Priority 

Assignment 

ARIMA Mean:42.48 

SD     :72.72 

4 

Non Linear 

Regression 

Mean:78.91 

SD     :109.79 

1 

Linear 

Regression 

Mean:45.05 

SD     :75.07 

3 

ANFIS Mean:42.41 

SD     :70.51 

5 

Neural 

Networking 

Mean:54.30 

SD     :84.95 

2 
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Table 8. Overall Best fit evaluation 

 

 

Figure 20. Overall best fit evaluation 

1. The Prediction Accuracy of all the predictor models. 

Table 3, Table 4 and Table 5, shows the detailed accuracy evaluation. Ideally, the 

expected prediction accuracy A of any predictor models are 100%, i.e. 0% error or 

negligible error. However, due to the stochastic nature of the data under 

consideration, the predictor models will yield different prediction accuracies. In this 

thesis, the device switching patterns and electricity price patterns are assumed to be 

random variables. The considered device type is a flexible device with no human 

interventions or minimal human interventions. From the Table 3, Table 4 and Table 5 

it is evident, that for the device type washing machine irrespective of the chosen 

predictor model and the chosen environmental test conditions, the prediction 

accuracy of 𝜔𝐿𝑜𝑎𝑑 is greater than 97%, 𝐴𝐿𝑜𝑎𝑑  > 97%. However, for price data which is 

relatively more random than switching data under consideration, the prediction 

accuracy does vary significantly. From Table 3, Table 4 and Table 5 it is evident that 

the prediction accuracy of 𝜔𝑃𝑟𝑖𝑐𝑒 vary from 0% - 60%, which is derived from the fact 

0

10

20

30

40

50

60

ARIMA Non Linear
Regression

Linear
Regression

ANFIS Neural
Networking

Priority assignment

Priority assignment

Predictor Priority Assignment value  

S 

U 

M 

DEVICE Water pump Heater Cooler 

CITY Anch Ltl Rok Pal Anch Ltl 

Rok 

Pal Anch Ltl 

Rok 

Pal 

Price/Load Price Load Price Load Price Load Price Price Price Price Price Price 

ARIMA 4 5 4 5 4 5 3 4 4 3 4 4 49 

Non Linear 

Regression 

1 4 1 4 1 4 1 1 1 1 1 1 21 

Linear 

Regression 

3 3 3 3 3 3 5 3 3 5 3 3 40 

ANFIS 5 1 5 1 5 1 4 5 5 4 5 5 46 

Neural 

Networking 
2 2 2 2 2 2 2 2 2 2 2 2 24 
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that the corresponding MAPE varies from 100% - 40% respectively. With all these 

results, the challenge lies in selecting the best predictor model for the DEMS, that 

fairs in each test condition. 

2. The best predictor model for the electricity price prediction. 

A relatively good predictor model for electricity price prediction is selected by 

considering each predictor model's mean MAPE 𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

 and standard deviation over 

the year 𝐻𝑠𝑡𝑑(𝑀𝐴𝑃𝐸) 
𝑦𝑒𝑎𝑟

in varied test conditions. The price data is very random in nature 

due to this stochastic behavior, there exists no single predictor model which can 

provide the best fit irrespective of the test conditions (e.g. predictor model: linear 

regression, predicts with a relatively lower error than the peer for the city 

Anchorage and in contrary, it is not the best predictor for the city Palmadel or Little 

rock). Thus the intuitive approach of assigning a priority number to each predictor 

model according to the fit is adopted, i.e. in a considered test condition, the predictor 

model with the lowest MAPE 𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

 ⟶ 0 and lowest standard deviation 

value 𝐻𝑠𝑡𝑑(𝑀𝐴𝑃𝐸) 
𝑦𝑒𝑎𝑟

⟶ 𝜇𝑀𝐴𝑃𝐸
𝑦𝑒𝑎𝑟

, is set with a highest priority number 5 and assigned with 

a lower priority number, if the opposite is the case. Since there exist 5 predictor 

models under consideration, the priority value varies from 5 to 1, where 5 indicates 

a relatively better fit and 1 indicates a relatively worse fit. This process of priority 

assignment is carried out in all the possible test conditions as shown in Table 8. The 

calculation denotes that, the predictor model ANFIS tops the peer with a priority 

value of 42, ARIMA stands 2nd with priority value 33, Linear regression  takes 3rd 

position by value 31, NN with 18 and Non-linear regression with 9 at the end. Thus 

ANFIS, relatively fits good for price prediction. 𝜇𝑀𝐴𝑃𝐸|𝐴𝑁𝐹𝐼𝑆
𝑦𝑒𝑎𝑟

≤ 𝜇𝑀𝐴𝑃𝐸|𝐴𝑅𝐼𝑀𝐴
𝑦𝑒𝑎𝑟

≤

𝜇𝑀𝐴𝑃𝐸|𝐿𝑖𝑛_𝑅𝑒𝑔
𝑦𝑒𝑎𝑟

≤ 𝜇𝑀𝐴𝑃𝐸|𝑁𝑁
𝑦𝑒𝑎𝑟

≤ 𝜇𝑀𝐴𝑃𝐸|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔
𝑦𝑒𝑎𝑟

.

 
.  

3. The best fit predictor model for predicting the device switching patterns (Only Water 

pump). 

A relatively good predictor model for the device switching prediction can be 

inferred from Table 3, Table 4 and Table 5. A relatively good predictor model is 

selected by considering each predictor model's mean accuracy and standard 

deviation over the year in various test conditions. The considered flexible device 

type is of zero or minimal human intervention. These device type is being operated 

for a fixed duration of time or until the completion of its specific task. Thus, it is 

relatively less stochastic and more deterministic in nature. Due to this reason, the 

device switching pattern is competitively predicted well by each predictor model 

considered, i.e. with the mean prediction accuracy greater than 97% over a year, i.e. 

𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝐴𝑅𝐼𝑀𝐴
𝑦𝑒𝑎𝑟

≈ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑁𝑁
𝑦𝑒𝑎𝑟

≈ ⋯ ≈ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔
𝑦𝑒𝑎𝑟

≈ 98%. However, the 

intuitive approach of assigning a priority number to each predictor model based on 

its fit, is applied for switching prediction as well, i.e. in a considered test condition, 

the predictor model with the mean accuracy closer to 100%, 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
𝑦𝑒𝑎𝑟

⟶

100% and least standard deviation value 𝐻𝑠𝑡𝑑(𝑀𝐴𝑃𝐸) 
𝑦𝑒𝑎𝑟

⟶ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
𝑦𝑒𝑎𝑟

, is set with 

highest priority number 5 and assigned with a lower priority number, if the 

opposite is the case. Since there exist 5 predictor models under consideration, the 
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priority value varies from 5 to 1, where 5 indicates a relatively better fit and 1 

indicates a relatively worse fit. This process of priority assignment is carried out in 

all the possible test conditions as shown in Table 8. The calculation denotes that the 

predictor model ARIMA tops the peer with a priority value of 15, the nonlinear and 

linear regression models stands 2nd with the priority value 10, NN with 6 and ANFIS 

with 3 stands at the end. In case of device switching prediction, all the predictor 

models competitively perform well in all the test condition. The predictor models 

are reordered based on varied priority values. The predictor models are not 

assigned with equal priority, even if there exists a minimal difference in the 

prediction accuracy, i.e. even if it is in the order of <10-3 percent. Thus ARIMA is 

relatively the best predictor model for device switching prediction. 

𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝐴𝑅𝐼𝑀𝐴
𝑦𝑒𝑎𝑟

≥ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔
𝑦𝑒𝑎𝑟

≥  𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝐿𝑖𝑛_𝑅𝑒𝑔
𝑦𝑒𝑎𝑟

 ≥ 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝑁𝑁
𝑦𝑒𝑎𝑟

≥

 𝜇𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦|𝐴𝑁𝐹𝐼𝑆
𝑦𝑒𝑎𝑟

.  

 

5.2 MDP Evaluation 

 

The MDP solving algorithm receives the predicted outputs (the  𝜔𝐿𝑜𝑎𝑑 and the 𝜔𝑃𝑟𝑖𝑐𝑒 in 

case of a Water pump, determined switching pattern and the 𝜔𝑃𝑟𝑖𝑐𝑒in case of Cooler and 

Heater). The main expectation from the MDP evaluation is identifying one predictor 

algorithm that helps to obtains an optimal ON-OFF scheduling policy for the next 24 

h 𝜔𝐿𝑜𝑎𝑑
∗  (96 ON-OFF states) which reduces 𝐶𝑡

𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦
; considering temperature, Peak 

Price and device specific parameters irrespective of device, place and time of year. 

One optimal policy 𝜔𝐿𝑜𝑎𝑑
∗  is obtained by solving MDP for the next 24 h with different 

waiting time, interruptions and at the same time verifying, whether the device switching 

prediction accuracy is greater than 97%, 𝐴𝐿𝑜𝑎𝑑  ≥ 97% (in case of a Water pump). Table 

9 depicts the evaluation of each predictor model under consideration for an arbitrarily 

chosen date i.e. April 29th of 2015. The MDP evaluation investigates whether the 

optimized switching schedule satisfies the following concerns 

1. Maximum allowed waiting for the device 𝑊𝐷
𝑀𝑎𝑥: This parameter is one of the 

operation and requirement critical specifications. The 𝑊𝐷
𝑀𝑎𝑥  is arbitrarily chosen 

as five hours. The waiting time is presented in Table 9 as the number of 15 

minutes interval count, i.e. 20 sampling interval in five hours. However, the 

Maximum allowed waiting for the device can be chosen based on the device's 

specification and manufactures recommendations. Accordingly, the devices 

should be turned ON, before the device's present waited time 𝑊𝐷
 reaches the 

𝑊𝐷
𝑀𝑎𝑥 . 

 

2. Maximum allowed interruptions of the device in a day is two times 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥: This 

parameter is one of the safety critical specifications. The 𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥 is arbitrarily 

chosen as two times. However, the Maximum allowed interruptions of the device 

in a day can be chosen based on the device's specification and manufactures 

recommendations. Accordingly, the device can be curtailed when its within 

𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥 count and when the present interruptions 𝐼𝑁𝑇𝑅𝐷

  count reaches 

𝐼𝑁𝑇𝑅𝐷
𝑀𝑎𝑥, the device should remain turned OFF. 
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3. The total execution time (duration for which the device is in ON state in a day) of 
the optimized schedule obtained from phase 2 must be same as that of the 
device's total execution time without the proposed algorithm, i.e. MDP scheduled 
ON time = Occurred ON time. 
 

4. The total cost of energy consumption 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 of the optimized schedule 

obtained from phase 2 must be less than or equal to that of the device's 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

 
without the proposed algorithm, i.e. CoEC from MDP scheduled switching ≤ 
Occurred CoEC. 
 

Once we obtain the optimal policy from one predictor algorithm (Ex: ARIMA: 

𝜔𝐿𝑜𝑎𝑑|𝐴𝑅𝐼𝑀𝐴
∗ ), a similar exercise is carried out for each predictor algorithm (Ex: Non 

Linear regression, Linear regression, NN, ARIMA and ANFIS: 

𝜔𝐿𝑜𝑎𝑑|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔,
∗  𝜔𝐿𝑜𝑎𝑑|𝐿𝑖𝑛_𝑅𝑒𝑔

∗ ...) for each day of the year, choosing a different location 

and device type. From Table 10 we see the wins of each predictor algorithm-MDP pair 

(ω* data resulting in lowest CoEC with good accuracy A) for the entire year, for a single 

device (Water pump) and for the chosen location, i.e. similar to Table 9, MDP evaluation 

exercise is carried out for 357 days and wins are captured for different device and 

chosen city for a year. The incapability indicates, that the predictor-MDP pair fails to 

provide device's switching prediction accuracy ALoad ≥ 97% and/or reduced forecasted 

CoEC than occurred CoEC, 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑂𝑐𝑐𝑢𝑟𝑒𝑑 > 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. In Table 9 these 

incapabilities are denoted by Inf. The win count indicates, the number of times in a year 

corresponding predictor model with MDP has optimized the schedule relatively better. 

Table 11 shows the winning pairs of different device type and different city. The Non-

linear regression and ANFIS indicate their incapabilities to support MDP optimization in 

all the scenarios. Since the predictor model and  MDP pair has to provide an optimal fit 

in all the scenarios, different Predictor model-MDP pairs are considered and evaluated. 

From Table 11, it is conclusive that the ARIMA-MDP pair wins, although the difference of 

wins would be marginal with immediate next alternative predictor model and MDP pair.  

Table 9. MDP evaluation for chosen date 29-4-2015 

 

ANKORAGE 

 

Water pump 

29-4-15 

Max 
Waiting 

Time 
(Samples 15 

Min 
Interval) 

Max 
Interruptions 

MDP 
Scheduled ON 

Time 
(Samples 15 
Min Interval) 

Occurred ON 
Time 

(Without MDP) 
(Samples 15 
Min Interval) 

CoEC from 
MDP 

scheduled 
switching in 

cents 

Occurred 
CoEC in 
cents 

ARIMA 
20 2 57 57 1.2768 

1.7046 

Non Linear 
Regression 

Inf Inf Inf Inf Inf 

Linear 
Regression 

20 2 57 57 1.2979 

ANFIS 
Inf Inf Inf Inf Inf 

Neural 
Networking 

10 2 57 57 1.2934 
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Table 10. Wins and incapability of all predictors for Water pump as load, in Anchorage in the year2015 

ANKORAGE 

Water pump 

Year 2015 Wins Incapability 

ARIMA - MDP 6   

Non Linear Regression - MDP 2 -8 

Linear Regression - MDP 4   

ANFIS - MDP 2 -3 

Neural Networking - MDP 6   

 

 

Figure 21. Wins and incapability of all predictor-MDP pair for Water pump, in Anchorage in the year2015 

Table 11. The resulting Predictor-MDP pair for different scenarios over the year 

Winners ANKORAGE LITTLE_ROCK PALMADEL 

Water 

pump 

ARIMA-MDP ARIMA-MDP ARIMA-MDP 

Heater ARIMA-MDP ARIMA-MDP ARIMA-MDP 

Cooler ARIMA-MDP ARIMA-MDP ARIMA-MDP 

 

4. The optimization of device switching schedule using MDP, i.e. the load shift achieved 

by considering peak price in a day and many other aspects, as compared to a 

schedule without MDP. 

An introduction to MDP, its role in this thesis and its implementation details are 

provided in SECTION IV. Accordingly, MDP has been employed to optimize the phase 

1 output, i.e. to optimize the prediction result of any predictor model 𝜔𝐿𝑜𝑎𝑑
∗ . The 

effect of optimization is a reduced CoEC per day (next 24 h is under consideration) 

than a CoEC resulting from any regular switching pattern, as predicted at phase 1, 

𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 <  𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑂𝑐𝑐𝑢𝑟𝑒𝑑. This optimization, i.e the load shift also 

takes several influencing parameters into consideration as narrated in SECTION IV. 

There exists a significant price reduction using MDP, i.e. as shown in Table 9, there 
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exists a 39.35% of 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 reduction w.r.t occurred CoEC. However, this 

magnitude of reduction is not the same for each day of the year. This scale of 

reduction is influenced by the accuracy of the chosen predictor model. Thus the scale 

of CoEC reduction is inconsistent, however, there exists a reduction in CoEC of 

optimized schedule 𝜔𝐿𝑜𝑎𝑑
∗ . 

5. The final outline of the proposed DEMS algorithm. 

Table 9 indicates a fact that MDP is reducing the CoEC by optimizing the ON-OFF 

schedule. From Table 3, Table 4 and Table 5, the derived inference is that the 

preferred predictor model for price prediction 𝜔𝑃𝑟𝑖𝑐𝑒  is ANFIS and the preferred 

predictor model for device's switching prediction 𝜔𝐿𝑜𝑎𝑑 is ARIMA. However, w.r.t the 

price prediction accuracy, ARIMA stands as the 2nd best and on the other hand, the 

device's switching prediction accuracy of ANFIS is relatively the worst among its 

peers. For that reason, ARIMA is referred in this thesis as a best-fit predictor model. 

Table 10 and Table 11 indicates that ARIMA in conjunction with MDP is providing a 

cost-effective and optimized switching schedule i.e  

 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝐴𝑅𝐼𝑀𝐴−𝑀𝐷𝑃 ≤ 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑁𝑁−𝑀𝐷𝑃 ≤ 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝐿𝑖𝑛_𝑅𝑒𝑔−𝑀𝐷𝑃 ≤

 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝐴𝑁𝐹𝐼𝑆−𝑀𝐷𝑃 ≤ 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

|𝑁𝑜𝑛−𝐿𝑖𝑛_𝑅𝑒𝑔−𝑀𝐷𝑃. 

Accordingly, the outline of the algorithm is "ARIMA predictor model at phase 1 and 

MDP at phase 2 and continued with phase 3, having microcontroller I/O pins to control 

the device action: ON or OFF ". 
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6. Conclusion 
 

In this thesis, a new modeling approach for DEMS is proposed. The proposed work is 

one of the possible approaches to reduce the CoEC 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

, to improve the efficiency 

and the effectiveness of power usage ηPower at the device level. An essential 

understanding of the problem statement is achieved, i.e. to eliminate the modern day 

critical electrical aspects such blackout, brownouts and other similar concerns, with an 

approach which needs less infrastructure and implementation costs. For that purpose, in 

this thesis, a 3 layered algorithm is proposed to reduce the 𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

. The proposed 

algorithm could be readily embedded into the existing or new flexible devices at a 

negligible cost since the algorithm will be provided as a software update and is 

implemented in the existing device microcontroller. 

The 3 layers of the algorithm are phase 1: RTM, phase 2: STS and phase 3: RTC, 

respectively. The primitive intentions of phase 1 are to predict the device's switching 

pattern and electricity price pattern for the next 24h. In phase 2 the predicted device 

switching pattern is optimized by considering the device type, the day's temperature (if 

temperature dependent), peak electricity price, the device specifications such as its 

maximum allowable waiting time, maximum allowable interruptions in a day, the total 

power requirement in a day etc., as described in SECTION IV. After a quality evaluation 

of the proposed algorithm on several flexible devices in various cities, the magnitude of 

𝐶𝑡
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑦

reduction, inferred that the MDP provides a cost-effective and an optimized 

switching schedule.  

The 6 predictors employed are shown in Table 1. List of Predictor models and its 

accuracy is tested in various scenarios as explained in SECTION V. Irrespective of the 

various test conditions(e.g.: different device type or different city etc.), the evaluation is 

performed over the entire year, i.e. for the year 2015. A relative best-fit predictor model 

is decided by considering the mean prediction accuracy and the standard deviation of 

the prediction accuracy. The predictor models with relatively high yearly mean accuracy 

value and the low standard deviation is inferred to be the best fit. For electricity price 

prediction and device switching prediction, ARIMA is relatively predicting better in each 

test case compared to its peer. The MDP reschedules the device's switching pattern 

considering several influencing parameters (e.g.: lower electricity price, daily required 

Power etc.).The optimized switching schedule obtained from the MDP is depending on 

the accuracy of the predictor model as well. The switching schedule obtained from 

different MDP and predictor model pairs, are evaluated and compared. From SECTION V 

it is evident that the ARIMA model followed with the MDP provides a cost-effective 

schedule, irrespective of the chosen city, season of the year and the device type. Apart 

from ARIMA-MDP pair, the other predictor model and MDP pairs either provide a 

relatively higher CoEC schedule or fail to provide a schedule for a given device and city 

throughout the year. To conclude, the ARIMA predictor model with MDP provides a 

relatively optimum schedule in various scenarios. 

The future work will focus on methods to optimize the modeling and prediction of the 

chaotic and nonlinear time series. The work will investigate the ways to understand the 
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electricity price dynamics and improve its prediction accuracy. The efforts include 

further optimization of the algorithm for robust performance and faster execution time. 

The work will address the challenges to reformulate the MDP to further reduce the cost 

of energy consumption by tracking the lowest electricity price at first. 
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8. Appendix 
 

 

Figure 22 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ARIMA) 

 

 

Figure 23 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ANFIS) 
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Figure 24 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Linear regression) 

 

 

Figure 25 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Neural Network) 
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Figure 26 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Nonlinear regression) 

 

 

Figure 27 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: ARIMA) 
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Figure 28 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: ANFIS) 

 

 

Figure 29 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Linear regression) 
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Figure 30 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Neural Network) 

 

 

Figure 31 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Nonlinear regression) 
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Figure 32 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: ARIMA) 

 

 

Figure 33 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: ANFIS) 
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Figure 34 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Linear regression) 

 

 

Figure 35 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Neural Network) 
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Figure 36 Device Switching prediction accuracy for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Nonlinear regression) 

 

 

Figure 37 Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ARIMA) 
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Figure 38 Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Linear regression) 

 

 

Figure 39 Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Nonlinear regression) 
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Figure 40 Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: Neural Network) 

 

 

Figure 41 Error in Electricity price prediction for the considered case (Device: Water pump, City: Anchorage, 

Predictor model: ANFIS) 
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Figure 42 Error in Electricity price prediction for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: ARIMA) 

 

 

Figure 43 Error in Electricity price prediction for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Linear regression) 
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Figure 44 Error in Electricity price prediction for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Nonlinear regression) 

 

 

Figure 45 Error in Electricity price prediction for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: Neural Network) 
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Figure 46 Error in Electricity price prediction for the considered case (Device: Water pump, City: Little Rock, 

Predictor model: ANFIS) 

 

 

Figure 47 Error in Electricity price prediction for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: ARIMA) 
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Figure 48 Error in Electricity price prediction for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Linear regression) 

 

 

Figure 49 Error in Electricity price prediction for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Nonlinear regression) 
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Figure 50 Error in Electricity price prediction for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: Neural Network) 

 

 

 

Figure 51 Error in Electricity price prediction for the considered case (Device: Water pump, City: Palmadel, 

Predictor model: ANFIS) 
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