


# Smart Grid on Existing Infrastructures of Mini Grids

International Renewable Energy Storage Conference (IRES) Berlin Nov. 20th, 2013 Thomas Walter and Bernd Brunner



## Agenda

- 1. Objective: Paradigm Change Demand follows Supply
- 2. Business Models: Opportunities and Challenges for RE
- 3. Generation cheaper than Flexibility: Smart Grid but when?
- 4. KISS (Keep It Simple and Stupid): "Easy" Smart Grid
- 5. Conclusion: Integrated view of RE, Storage, Smart Grid

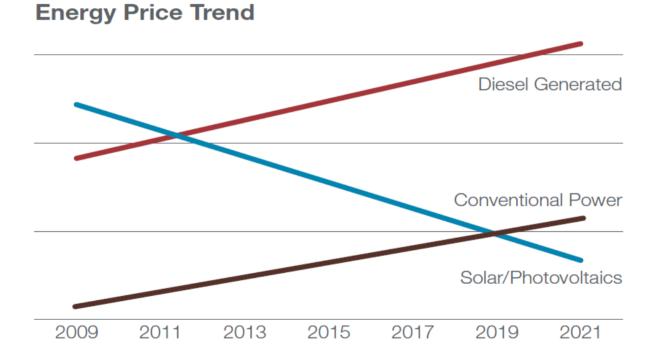
# Objective: Paradigm Change - Demand follows Supply

Issues to be addressed to achieve RE dominated grids:

- Enough **demand that can** follow
- **RE is cheaper** than the other forms of energy
- Savings (by shifting loads) **exceed Smart Grid transaction cost**
- **Combination of smart market and grid technology** (supplier and customer benefit, robust and cheap technology)
- Markets develop now, and suitable smart market/grid can **support their quick growth**

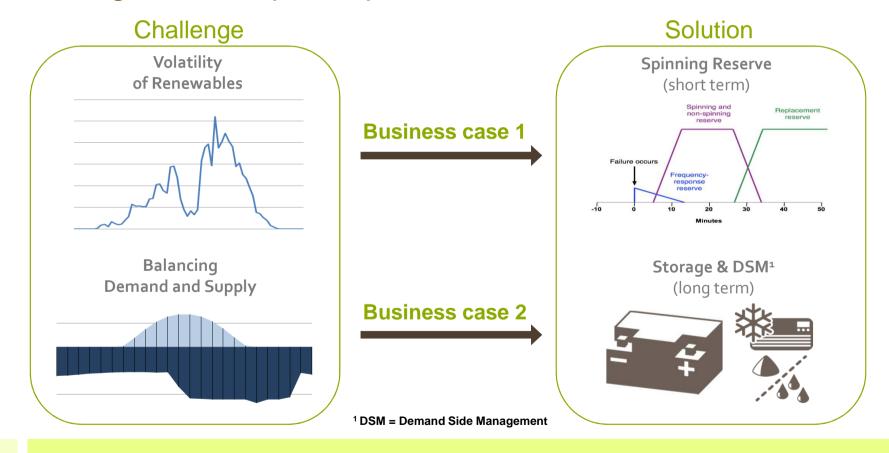
# **Opportunities and Challenges for RE**

Our business background: PV substitutes fuel in PV-Diesel Hybrids

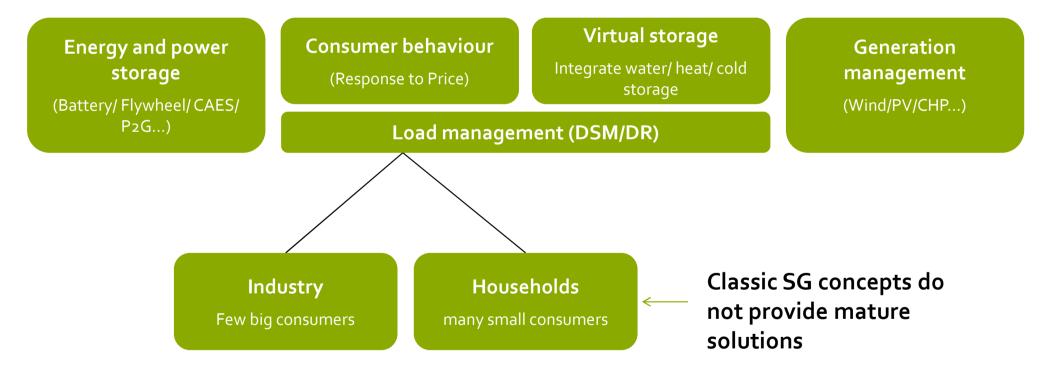

### Market characteristics:

- Mainly Diesel genset powered
- RE is cheaper (~ 0.3 \$/kWh fuel cost in Diesel electricity)
- No distortion by subsidies (w/w fossils receive five times more subsidies than RE)
- High load shift potential (desalination, cooling, E-mobility)




## **Opportunities and Challenges for RE**

PV is beyond Grid Parity in diesel markets, other segments will follow soon




# **Opportunities and Challenges for RE**

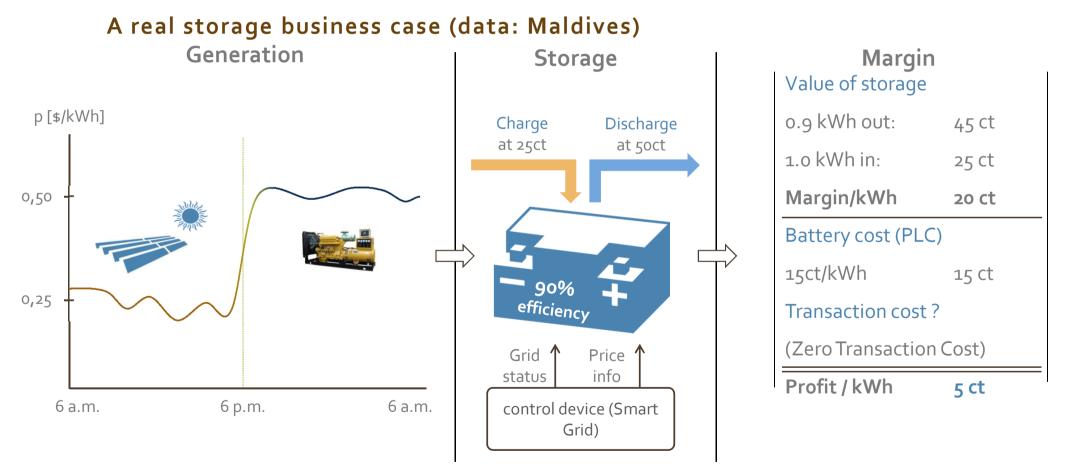
Balancing and stability are key from ~20% RE share



#### Storage is major cost element in system – toolkit to build solution



### From a Status Review by European Electricity Grid Initiative (EEGI)


- Currently no project ready for deployment
- Research still required in many categories

#### Main Barriers:

- Data privacy
- Integration of storage due to their high cost
- Integration of ICT (complexity)

|                                                                   | T1   | T2     | т14  | тз    | т4 | т5 | т6       | 77 | т8 | т9 | т10 | T11      | т12 | T15 | T16 | T17 | 1<br>1 | TD<br>2 | TD<br>3 | TD<br>4 | TD<br>5 |
|-------------------------------------------------------------------|------|--------|------|-------|----|----|----------|----|----|----|-----|----------|-----|-----|-----|-----|--------|---------|---------|---------|---------|
| Hardware                                                          | -1   | -1     | 3    | 1     | 1  | 1  | 1        | -1 | -1 | -1 | -1  | -1       | -1  | a   | -1  | 2   | -1     | 2       | 1       | -1      | -1      |
| Software<br>tools                                                 | 2    | 2      | ۲    | 2     | 2  | 2  |          | 2  | 2  |    | а   | 2        | 2   | 2   | 3   | -1  | 2      | 2       | 2       |         | -1      |
| Integration<br>into the<br>system                                 | 3    | a      | -1   | 2     | 2  | 2  | 3.<br>3. | 2  | 2  | 3  | 2   | 2        | 2   | 2   | 2   | 2   | 2      |         | 2       |         |         |
| Market<br>Design                                                  | -1   | 2      | -1   | -1    | -1 | -1 | -1       | -1 | -1 | -1 | 3   | <u>s</u> | 10  | -1  | -1  | -1  | -1     |         |         | -1      | -1      |
| Cost-benefit<br>analysis                                          | -1   | 2      | - 2- | 2     | 2  | 2  | -1       | ા  | -1 | 2  | а   | 2        | 2   | 2   | 2   | 2   | -1     | ્ય      | - 31    | -1      | 1.35    |
| Regulation<br>of grid<br>services                                 | -1   | -1     | 3    | 2     | -1 | 2  | -1       | 1  | -1 | 3  | 3   | 2        | з   | -1  | -1  | 3   | 2      | 3       | -3      | 3       | 3       |
| Stakeholders<br>involvement                                       | -1   |        | -    | -1    | -1 | 1  | -1       | -1 | 2  | 2  | a   | 2        | 2   | -1  | -1  | -1  | 2      | 2       | 3       | 2       |         |
| System<br>reliability                                             | -1   | -30    | 3    | 2     | *  | 3  | э.       | з  | -1 | з  | з   | 2        | 2   | 2   | 3   | 2   | 2      | 121     | 2       | *       | -1      |
| Not releva                                                        | nt   |        |      |       |    |    | _        | _  | _  |    |     |          |     |     | _   | _   |        | _       | T       | _       |         |
| Ready to d                                                        | eplo | y at l | arge | scale | e  |    |          |    |    |    |     |          |     |     |     |     |        |         |         |         |         |
| Need more demonstration or pilot project to validate the maturity |      |        |      |       |    |    |          |    |    |    |     |          |     |     |     |     |        |         |         |         |         |

Source: Michele de Nigris, GRID+: COORDINATION ACTION IN SUPPORT TO THE EEGI: RECENT UPDATES

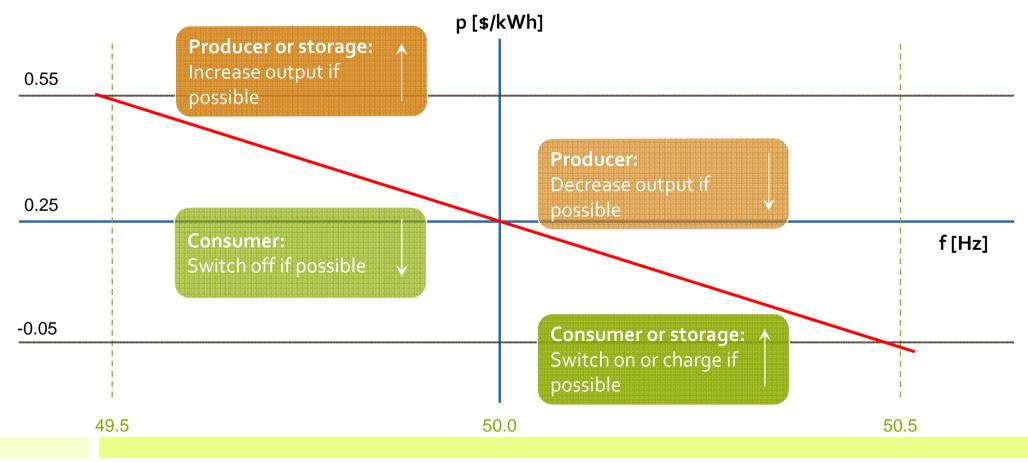


Technical "Smart Grid" and a "Smart Market" allow optimal solutions

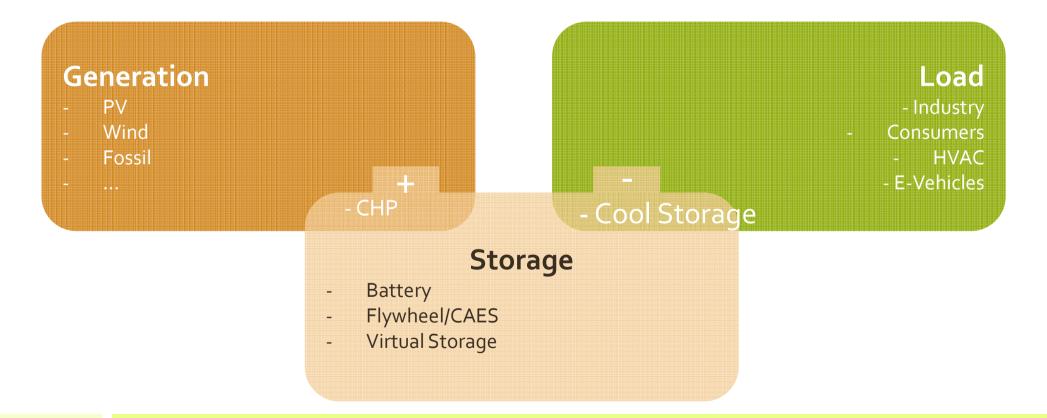
Generation cost (Maldives)

| Diesel                  |                   |                  | 0.50 \$/kWh                                                                                             |
|-------------------------|-------------------|------------------|---------------------------------------------------------------------------------------------------------|
| ← Value                 | of flexibility of | diesel>          | PV 0.25 \$/kWh                                                                                          |
| Storage cost<br>Battery | 0.15 \$/kWh       |                  | <ul><li>Merit Order of Flexibility:</li><li>Batteries compete with other flexibility</li></ul>          |
| Cooling                 |                   | o.oo \$/kWh      | <ul> <li>sources</li> <li>Smart Grid provides the basis to</li> </ul>                                   |
| Desalination            |                   | o.oo \$/kWh      | <ul> <li>integrate these as "Virtual Storage"</li> <li>Loads have incentive to provide cheap</li> </ul> |
| E-mobility              |                   | 0.00 \$/kWh      | flexibility (Cooling, Desalination, Electric                                                            |
|                         | Transaction co    | ost (classic SG) | Vehicles, etc.)                                                                                         |

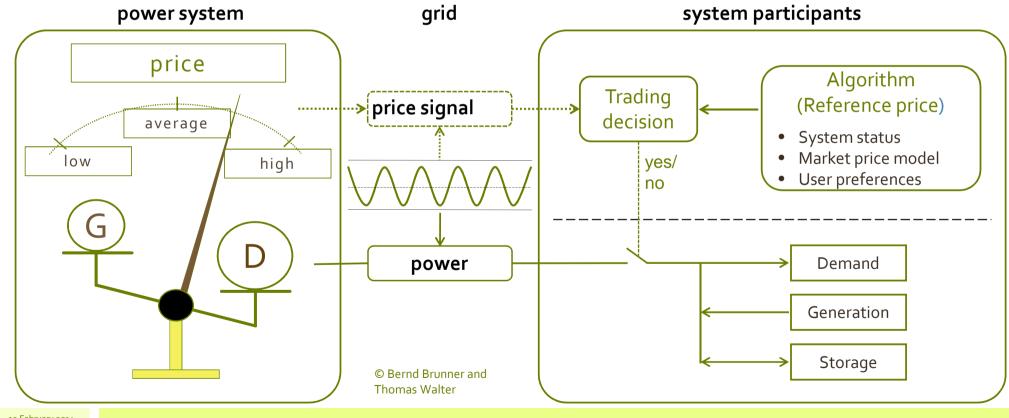
### Early markets need Smart Grid that will work soon


### "Easy" Smart Grid: Single (Realtime-) Price within Mini Grid:

- If generation < load: Increase price until balance reached
- If load > generation: Reduce price until balance reached
- Flexible generators: Shift to high price times
- Flexible consumers: Shift to low price times
- Storage: Charge at low price, discharge at high price


### How to identify the balance and communicate the price?

- "Big Data" (classic Smart Grid) solutions or
- "Easy" Smart Grid (using existing grid operation principles)


### Existing grid operating principle – extended by price info



Integrated market for energy (\$/kWh), grid cost is covered by fee (\$/kW)



Smart Grid: A Real Time Trading Platform with Near Zero Transaction Cost



# Summary of benefit

- Different flexibility sources integration
- Simple market rule for generation, demand and storage
- System benefits
- Real time and transparent price (no latency, better system stability)
- Near zero transaction cost
- Grid - Relevance of technology for larger electricity grids?

- operat bo S regula

syst

- Faster migration to RE
- Grid operator enhanced as exchange operator
- Investment reduced in ICT and storage
- Less risk through reduction of complexity
- Future proof



pliers

d

S

ipment

equ

σ

Ĕ

σ

S

Ð S 

enc

for

Benefits

- Lower cost of energy
- Lower grid fees
- Additional income from ", selling flexibility"
- Functionality can be implemented "for free" by suppliers
- Investors in flexibility (storage, algorithms) can expect attractive business cases
- Key partners add features attractive for customers (and grid)

15 July 22, 2012

# Integrated view of RE, Storage, Smart Grid The time to act is now

- A substantial market with a "triple win" for suppliers, operators and customers
- "Easy" Smart Grid synchronizes interaction of all players involved
- Collaborative concept implementation will benefit market development of intelligent mini grids- possily with spinoff into "traditional" grids
- Saved cost enables a sound business model and profit opportunities with substantial reduction of GHG emissions on top
- Your inputs and contributions are most welcome

# Thank you for your interest!

Thomas Walter Mobile : +49 171 229 4629 E-Mail : thomas@einwalter.de

This slides have been adapted to a new corporate design.

