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o Distribution
Power plant Transmission

Fig 1.Traditional Electrical Grid [1]

Current problems

* Infrastructure problems e ey J_
* Black outs METERING MA R ™ CURRENT
ﬁ%i!‘l!ﬂ;limlnlzsm . lm' HHW']:B-EML
* Brown outs : St 2 MLOAD = S tohsumens
» High cost [ > EL,,EH |3,|E|T\'~f55* INE CONTROL S
+ Inflexibilit FGE i % SNt ™
. y . %ENERGY TECHNOLOGIES el - ﬂ EM ™
* Lack of information transparency = 'U"Esﬁgn
Upcoming challenges :Scarcity of
resources, Distributed power supply
Automated control through out the grid
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Supporting technologies
* Real time pricing

* Advance meter reading : AMI or Automated meter reading : AMR
* Enable Home area network : HAN ncear 1 3

Characteristics of HAN pomes o | i
= p

* Motivates the customers

* Modified COEC

* Real time demand-pricing information
* Low installation cost Cides andoffe
* Reduced system peak

« Efficient and smart appliances

gL

Renewable energy Phatovoltaic

Ecological vehicle Wind generatar

Fig 2. Smart Grid [2]
» Resist Attack

* Accommodate all the generation and storage options
» Optimize the assets and operates efficiently
* Smart in-home system
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Supporting technologies

* Real time pricing
* Advance meter reading : AMI or Automated meter reading : AMR
* Enable Home area network : HAN

Characteristics of HAN
* Motivates the customers

* Modified COEC

* Real time demand-pricing information
 Low installation cost

* Reduced system peak

« Efficient and smart appliances

Fig 2. HAN [3]

* Resist Attack

* Accommodate all the generation and storage options
» Optimize the assets and operates efficiently

* Smart in-home system
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2. Outline of algorithm
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3 Phases of algorithm

Fig 3. HAN [3]

Prediction Phase / Phase 1

Predict next 24h device switching pattern and
electricity price information .

Optimization Phase

The objective of this phase is to optimize the
forecasted switching patterns (ON-OFF patterns)

Phase 3

Once the device switching schedule is optimized
in phase 2, the controller hardware takes over,
to control the device state of operation

8/6/2017




Overview of Implementation
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3. Prediction phase or phase 1
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Price Prediction

Load prediction

Predictor models

Neural Network

Independent variables

Minutes Of Day

Linear regression

Previous week Same Time Price

Non-Linear regression

ANFIS

Average Previous Week Same
Day Price

ARIMA

Independent variables

Predictor models

Minutes Of Day

Neural Network

Weekend is true

Linear regression

Weeks Day Number

Hour Of Day

Non-Linear regression

Previous week Same Time Load

ANFIS

ARIMA

Average Previous Week Same
Day Load

Temperature, Relative humidity,
Dew point, Wind speed
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Predictor models Independent variables

Minutes Of Day

Previous week Same Time Price

Average Previous Week Same
Day Price

Price Prediction

Non-Linear regression | _—

Independent variables

Minutes Of Day

Predictor models

Load prediction

Previous week Same Time Load

Average Previous Week Same
Day Load

Non-Linear regression
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4. Optimization phase or phase 2
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4 N

Forecasted LOAD and PRICE is applied as input to MDP (Formulated as MDP problem).
MDP outputs/determines, ON/OFF state of the device for next 15 Minutes.

MDP runs for every 15 Minutes.MDP determines ON/OFF state(of next 15 Minutes) based
on 6 parameters and additional Temperature(lf Temp Dependent Device).

* Price for next 1 hour (C,)

* Electricity price at a specific instant of time t (C,)
* Total device execution time left (T, )

* Present waited time (W,/ Wp,,0./

* Alpha: state jumps (a)

Qecks, if device needs to be turned ON that day (Dg,,,.) /

8/6/2017 15
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| Key Plots : Optimization / Phase 2 implementation
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|
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The transition probability is a 5 x 5 x 2 matrix, i.e. 5 states [S1, S2, S3, S4, S5] and
2 actions [ON, OFF].

az

%1 Statel |State2 |State3 | State4 | State5
clot-1Y — RTP * Load = ¢+ * Wp0aq State 2
State 3
l State 4
State 5

Transition probability is a 5 x 5 x 2 matrix

S tepsize = Max ( C:Gtal_day ) / 5

val{:,:,2) =
1’ 0.9737 0 0 0 0.0263
0.2000  0.6000  0.2000 0 0
. . , 0 0.1429  0.7143  0.1429 0
T(S 1 S') _ Number of transisions from stateSto S ! 0 01350 0.7500  0.1250
Total number of transistions from the state S o 0.0270 0 0.0270  0.9459

Transition probability for ON

8/6/2017 17
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| MDP : Formation of Transition Probability

The transition probability is a 5 x 5 x 2 matrix, i.e. 5 states [S1, S2, S3, S4, S5] and
2 actions [ON, OFF].
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The transition probability is a 5 x 5 x 2 matrix, i.e. 5 states [S1, S2, S3, S4, S5] and
2 actions [ON, OFF].

az

%1 Statel |State2 |State3 | State4 | State5
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State 3
l State 4
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| MDP : Formation of Reward function

1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a . State jump factor.
C, : Cost for next 1 hour.
C, . How Low is the present cost
Toxe : Device execution time lefft.
Wo/Wpax : Present waited time.
Dtart : Checks, if device needs to be turned ON that day.
Temperature : Temperature (If Temp Dependent Device).

8/6/2017 20
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l MDP : Formation of Reward function
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1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a . State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
T oxe : Device execution time left.
Wo/Wphjax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).

Jump from a higher CoEC state to a lower CoEC is assigned better reward than a jump from

lower to higher. Where state S is the initial state and S’ is the next state. The index value ranges
from 1 to 5.

a;

|l State]l |State2 | State3 | State4 | State 5

Index of S State 2

— State 3

Indexof §" S

State 5
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l MDP : Formation of Reward function
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1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
T oxe : Device execution time left.
Wo/Wphjax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).

Hstapy = + std(X)
=24 {TI’HE( [mPerJ CUE-_&:SE: mig*:'_fc[:e ’ ME:ICSE] < HSfd{X}}

Where,

u: Mean of the Forecasted price data: set of 96 samples, each sample at15 min interval.
std(X) : Standard Deviation of the Forecasted price data: set of 96 samples, each sample at 15 min interval.

8/6/2017 22
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Wp
R=a * C; *C, * Tp,, * e * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, . How Low is the present cost
Tere : Device execution time left.
Wo/Wphjax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).
t P
C, — Wprice — FMin
5 =
Pypax—Pmin
Where,

Whrice : Electricity price at the current sampling time.

Puin - : Minimum electricity price of the day: Min{set of prices:96samples} =
mfﬂ{mﬁ"ite }

Puax  : Maximum electricity price of the day: Max{set of prices:96
samples}= max{wp,ice }

8/6/2017 23
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| MDP : Formation of Reward function
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1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
Toxe : Device execution time lefft.
Wo/Wphjax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).

This reward component assigns lower reward during the devices initial execution time,
thereby less curtailment on its operation. On the other hand, this reward component forces
the device to remain turned ON, when the device approaches its required execution time,
thereby allowing the device to execute till the completion of specific task

8/6/2017 24
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‘ MDP : Formation of Reward function
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1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
T oxe : Device execution time left.
Wo/Wpax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).

A reward component for waiting time of the device. The reward increases as the device's
present waiting time approaches the device's maximum waiting time

8/6/2017 25
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| MDP : Formation of Reward function
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1%
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
T oxe : Device execution time left.
Wo/Wphjax : Present waited time.
Dtart : Checks, if device needs to be turned ON that day.
Temperature - Temperature (If Temp Dependent Device).

This reward component scales the reward function with '1"if at all the device is required to be
scheduled/turned ON that particular day or else scales with '0". As a consequence the scenario
in which the devices being turned OFF at weekends are covered.

8/6/2017 26
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‘ MDP : Formation of Reward function
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W,
R=a * C; *C, * Tp,, * W_ﬂi"x * Derare * Temperature
D
Where,
a : State jump factor.
C, : Cost for next 1 hour.
C, : How Low is the present cost
T oxe : Device execution time left.
Wo/Wphjax : Present waited time.
D .1t : Checks, if device needs to be turned ON that day.
Temperature : Temperature (If Temp Dependent Device).
m%’efmperature — Temperaturepmin
Temperature =

Temperaturépgx—Temperaturepin
Where,
Wlemperature : 1€Mperature at the current sampling time.

Temperaturemin] : Minimum of entire day's temperature

Min{set of temperature:96samples}= min{@remperature }

Temperatureyax : Maximum of entire day’s temperature

Max{set of temperature:96samples}= max{@Wremperarure }

8/6/2017 27
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l MATLAB Graphical user interface(GUI)

Required Load scheduling is achieved A simulator is designed for ease of use
and assessment .

A

SMART LOAD
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5. Results of the proposed algorithm
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Functionality : Water Pump

Water Pump: Forecast Date(April 29t of 2015)

1) Cost for next 1 hour
2) Present waited time

3) How Low is the present
cost (This very Moment)

4) Alpha: state jumps

5) Total device execution
time left

6) Checks, if device needs
to be turned ON that day

|
i Temperature
i |

‘ C T T )
. o H?& ( \ Forcasted Load
E}Br:‘l}c?f - \\"‘j--*’"‘ =4 \ - Nrm Frocasted Price | |
0.5 | \ Mean Fr
\ /| ——highSdF
‘l \ @l r
n | | | ] [ e | | |
0 10 30 40 50 60 70 80 20 100
Samples(15 Minutes Interval)
|
| — !
——— T T
| Scheduled Output
|
Device | —
onoi 05 | || || || || y
|
| | |I |
0 | | | | | || L
10 20 30 40 50 60 70 80 90 100
Samplesi15 Minutes Interval)
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Functionality : Heater

Heater : Forecast Date(April 29t of 2015)

1) Cost for next 1 hour
2) Present waited time

3) How Low is the present
cost (This very Moment)

4) Alpha: state jumps

5) Total device execution time
left

6) Checks, if device needs to
be turned ON that day

1 T T | T T T [ T I T v T
M || | | Scheduled Output |
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omoff 051 H ﬂ H | H f _
| | | |
0 1 || I | L L |. 1 | L | I
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1 — v
T <;| 7 j) . T T | T . T
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" R high Sd Fr
o 1 1 1 ] l Mg T | | |
(1} 10 20 30 40 50 60 70 80 90 100
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|
100 T T T T T w T T T
Temp(F} B80[ T Tiﬂrsh'rftirgnemu i
60 - 7 T
e --_d_ - —
| | | | | | | | |
< -
) 10 20 30 40 50 60 70 80 90 10

Samples(15 Minutes Interval)
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Cooler: Forecast Date(April 29t of 2015) I

1 T T T T T T T T T
[\ || Scheduled Output
Device 1
onorr 0.5 ’: | 7
! |
] ! | | | | | | |
n I I 1
1) Cost for next 1 hour . T B - i ) = P — - = T
2) Present waited time : Samples(is Winites Intemi}
1
. ! T, t
3) How Low is the present y : — ; : : ¢| : :
cost (This very Moment) P ! I ] —
Devies ,-’: N\ | || Forcasted Load
. S L, Mrm Frocasted Price
4) Alpha: state jumps Onioff 0.5 - / *: - Mean Fr ]
N | ~ high Sd Fr
5) Total device execution a . . . E . i\_.— TR L
time left 0 10 20 30 ! 40 50 60 70 B0 90 100
1 Samples(15 Minutes Interval}
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]
to be turned ON that day | I \—Jmm _
100 T T T 1 T ¢ T T T T
|
TempF) B8O i [ A Temp_or hifting emo | |
e T
60 |- - I
a— __\_\_\_\—_-.____.--' -
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6. Performance evaluation of the proposed algorithm
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City: Anchorage, Device: Water Pump, Predictor Model: ARIMA Citty: ﬁﬂﬂlﬂmﬂﬂrLPrlﬂ prediction emror (MAPE), Predictor Model: ARIMA
T T T T T T T T T T T T L]

180 100
— 54 Deviation S Deviation
L o a0 e 4
160 ——— Mean an
The load predicon accuracy aok MAPE of the price predicion }
140 -

- 1 d : | 1

Accuracy in Percent
2
T
1
MAPE in Percent

=

T

1

6O al
30 4
40 - sl |
20 i 10
0 . . i . i B - ] 1 i Il Il Il i i
1] 50 100 150 200 250 300 350 400 o 50 100 150 200 250 300 350 400
Days of year 2015 Days of year 2015
Water Pump ANKORAGE LITTLE_ROCK PALMADEL Prediction Accuracy Evaluation winner
PRICE LOAD PRICE LOAD PRICE LOAD
ARIMA Mean:42.48 Mean:97.94 Mean:42.84 Mean:.97.94 Mean:42.73 Mean:.97.94
SD :72.72 SD :115.76 SD :72.90 SD :115.76 SD :72.13 SD :115.76 Prlorlty aSSIgnment
Non Linear Mean:78.91 Mean:97.92 Mean:78.91 Mean:97.92 Mean:78.91 Mean:97.94 60
Regression 50
SD :109.79 SD :115.83 SD :109.79 SD :115.83 SD :109.79 SD :115.86 40 B Priority
Linear Mean:45.05 Mean:97.80 Mean:44.81 Mean:97.82 Mean:45.27 Mean:97.80 33 assignment
Regression
& SD :75.07 SD  :115.90 SD :74.85 SD  :115.92 SD :75.27 SD  :115.90 10 l E
0
ANFIS Mean:42.41 Mean:106.70 Mean:42.41 Mean:106.70 Mean:42.41 Mean:106.40 ' ' ) ' ' .
\n 3 & S ol
SD :70.51 SD :143.63 SD :70.51 SD :143.62 SD :70.51 SD :131.70 vg.\_"x\ \}(\"' \->(~Q' ?§$ $¢>@
Neural Mean:54.30 Mean:97.36 Mean:52.61 Mean:97.28 Mean:52.36 Mean:98.51 ‘xﬁo
Networkin
W § SD :84.95 SD :116.31 SD :83.39 SD :115.63 SD :82.86 SD :116.65
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MDP Evaluation ANKORAGE
Water pump
Max Waiting MDP Scheduled Occurred ON Time | CoEC from MDP Occurred
Time Max ON Time (Without MDP) scheduled CoEC in
(Samples 15 Interruptions (Samples 15 Min (Samples 15 Min switching in cents
Min Interval) Interval) Interval) cents
29-4-15
ARIMA 20 2 57 57 1.2768
Non Linear
In In In In In
Regression f f f f f
Linear 20 2 57 57 1.2979 1.7046
Regression
ANFIS Inf Inf Inf Inf Inf
Neural 10 2 57 57 1.2934
Networking

B Wins

B Incapability

Table 1. Majority winner by providing best price for different cenarios
8/6/2017 35
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Best Fit
Winners | USA_AK ANKORAGE USA_AK_LITTLE_ROCK | USA_AK PALMADEL Approach
Water ARIMA ARIMA ARIMA . -
Pump
Heater ARIMA ARIMA ARIMA
Cooler ARIMA ARIMA ARIMA

1) Cost for next 1 hour

2) Present waited time

3) How Low is the present cost (This very Moment)

4) Alpha: state jumps \ J
5) Total device execution time left Scheduled Output
6) Checks, if device needs to be turned ON that day For next 15 Min
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‘ Key Plots : COEC or Cost reduction

CHEMNITZ
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lKey Plots : Load prediction

CHEMNITZ
1.2 T T T T T T T T
Forcasted Load
1 | —— Actual Load n
I
08 | | m
| -
Load(KwiH}
. | | -
02 ‘ | 1
0 | | | | | | | | | | |
0 10 20 30 40 50 60 70 80 80 100
Samples(15 Minutes Interval)
1ﬂ'15
20 T T T T T T T
Error Load
-3 Max_Error =5.9852e-15 -
Error{kwiH) 4k |
5 .
5 |
0 10 20 30 40 50 60 70 80 80 100
Samples(15 Minutes Interval)

8/6/2017 39



TECHNISCHE UNIVERSITAT | Key Plots Prlce predlctlon

CHEMNITZ

10 T T T T T T T

Forcasted Price

B \\I — Actual Price -
\
\

6 / \ .

Price(Cents/

Kowr) 7]
2 —
0 | | | | | | | | |

0 10 20 30 40 50 60 70 80 a0 100
Samples(15 Minutes Interval)

6 T T T T T T T T
5| Error Price | _|

Max_Error =5.973

Error{Cents/ 3
Kwe)

A | |
0 10 20 30 40 50 60 70 BO 90 100

Samples(13 Minutes Interval)

8/6/2017 0



5

oo | REfEerence

CHEMNITZ

[11 Smart grid , Accessed on: 4-4-2017,under the address: https.//www.edsoforsmartgrids.eu/home/why-smart-grids/
[2] Smart grid , Accessed on: 4-4-2017,under the address: http.//www.naonworks.com/old/inc_html/sub2_3.html|

[3] Smart meters , Accessed on: 4-4-2017,under the address: https://www.sdge.com/residential/about-smart-meters/home-and-
business-area-network

[4] Geir Warland, Birger Mo :"Stochastic optimization model for detailedlong-term hydro thermal scheduling using scenario-tree
simulation".SINTEF Energy Research, Sem Saelands vei 11, Trondheim 7034, Norway.

[5] M. Erol-Kantarci and H. T. Mouftah, “Wireless sensor networks for cost-efficient residential energy management in the smart
grid,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 314-325, 2011

[6] Anders Gjelsvik, Birger Mo, and Arne Haugstad :"Long- and Medium-term Operations Planningand Stochastic Modelling in
Hydro-dominatedPower Systems Based on Stochastic DualDynamic Programming”

[7] Tung T. Kim, Member, IEEE, and H. Vincent Poor, Fellow, IEEE : "Scheduling Power Consumption WithPrice Uncertainty”,
IEEE TRANSACTIONS ON SMART GRID, VOL.2, NO. 3, SEPTEMBER 2011 519

[8] K. M. Tsui and S. C. Chan, Member, IEEE :"Demand Response Optimization for Smart HomeScheduling Under Real-Time
Pricing”, IEEE TRANSACTIONS ON SMART GRID,VOL. 3, NO. 4, DECEMBER 2012.

[9] Murat Kuzlu , Manisa Pipattanasomporn, Saifur Rahman:"Communication network requirements for major smart
gridapplications in HAN, NAN and WAN".Virginia Tech, Advanced Research Institute, Arlington, VA 22203, USA

[10] Cynthujah Vivekananthan, Student Member, IEEE, Yateendra Mishra, Member, IEEE, andFangxing Li, Senior Member, IEEE
"Real-Time Price Based Home Energy Management Scheduler." IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO.4,
JULY 2015 2149

8/6/2017 41



5

oo | REfEerence

CHEMNITZ

[71 MATLAB : Accessed on 2.4.2017 under the address : https://de.mathworks.com/

[8] SAS Institute Inc. 2004. SAS/ETS 9.1 User’s Guide.Cary, NC: SAS Institute Inc. SAS/ETS 9.1 User’s Guide Copyright © 2004,
SAS Institute Inc., Cary, NC, USA

[9] JOHN WILEY & SONS, INC.: "Nonlinear RegressionAnalysis and Its Applications Second editionDouglas M. Bates and Donald G.
WattsA Wiley-Interscience Publication”

[10] J.doyne Farmer and john J.sidorowich : "Predicting chaotic time series”, Accessed on: 24-8-1987, physical review letters, las
alamos,newmexico 87545

[11] Neural Networking : Accessed on : 5.4.2017 under the address : http.//www.obitko.com/tutorials/neural-network-
prediction/prediction-using-neural-networks.html|

[12] Electricity generation, transmission and distribution, Accessed on:5:5:2017 : under the address
https://www.eia.gov/energyexplained/index.cfm?page=electricity _delivery, Last updated: August 31, 201

[14] Linear regression, Accessed on : 5:5:2017 : under the address
https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/linear_regression.pdf

[16] Maysam Behmanesh, Majid Mohammadi, Vahid Sattari Naeini "Chaotic Time Series Prediction using Improved ANFIS with
Imperialist Competitive Learning Algorithm", September 25" :2014. Blue Eyes Intelligence Engineering & Sciences Publication Pvt.
Ltd.

[17] Frank Z. Xing, Xiaomei Zou and Erik Cambria: "Predicting Evolving Chaotic Time Serieswith Fuzzy Neural Networks"

[18] Jesus Soto, Oscar Castillo, and José Soria : "Chaotic Time Series Prediction Using Ensembles of ANFIS", springerlink.com ©
Springer-Verlag Berlin Heidelberg 2010

8/6/2017 o)



