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Abstract 

Energy supply of isolated communities is mostly achieved by diesel generators and 

fossil fuels. This leads to high electricity prices with a high dependency on expensive 

fuel and the global oil price. As renewable energies are becoming more and more 

cost competitive, the interest of isolated communities in renewable energies rises. 

The additional integration of flexible loads can lead to synergy effects and thus 

further increase the interest in renewables. 

In order to answer the economic and functional interaction of PV power generation 

and flexible loads in isolated grids, a mathematical optimization model for an isolated 

grid and its system components is developed in the General Algebraic Modeling 

System as a linear program, respectively mixed integer linear program. The objective 

of the model is the minimization of the annual total costs for the energy supply 

system and the model is solved with IBMS`s Cplex solver. As flexible loads, a 

desalination process and a battery storage system is considered. Several scenarios 

for the integration of PV power generation and the flexible loads are defined and 

studied. Furthermore, a decentralized integration approach of a flexible load with a 

price signal is conducted and compared. The uncertain parameters are studied and 

the most important ones are identified. 

The main outcomes are:are the integration of PV power in an isolated grid results in 

lower total cost for the energy supply. The integration of flexible loads either results in 

a better utilization of PV power or in a higher penetration of PV powerand thus also in 

lower total cost for the energy supply. Battery storage systems are still too expensive 

to be beneficial from an economic point of view. The decentralized integration 

approach of the flexible load with a price signal shows different operational 

characteristics, but the resulting key figures are comparably similar. The most 

important uncertain parameters are all related to the diesel generator, as the main 

part of electricity is still diesel generated. 
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1 Introduction 

The majority of experts in science, politics and nowadays even in economy, agree 

that the emissions of greenhouse gases need to be reduced in future. That is why 

renewable energy generation will increasingly be playing in order to satisfy the 

energy demand and to realize a reduction of greenhouse gas emissions. Due to the 

fluctuating nature of renewable energies, the entire power supply system faces new 

challenges to realize a stable and reliable supply and to reach a high penetration of 

renewable energies. Thus, new approaches to the electricity system are needed. 

One approach to increase the penetration of renewable energies is the utilization of 

flexible loads and energy storages. Energy management including the supply side, 

potential electricity storage as well as the demand side can help to balance 

production and consumption and to overcome the challenges of the intermittent 

character of renewable energy production (Mohammed, Mustafa, & Bashir, 2014). 

In this thesis, the economic and functional interaction of flexible loads and 

photovoltaics (PV) power generation is analyzed in the context of isolated grids. 

Currently isolated areas, like islands or remote villages mostly rely on diesel 

generators for their energy supply. Grid connection or grid extension is often not 

possible due to high infrastructure investment (Fathima & Palanisamy, 2015; 

Hazelton, Bruce, & MacGill, 2014). Hence, decentralized diesel generators are the 

only possible way to ensure a reliable energy supply. This leads to a high 

dependency on the global oil price and on expensive diesel fuel in general. 

Therefore, renewable energy generation such as solar power plays an increasing role 

when it comes to isolated power supply considerations (Mofor, Isaka, Wade, & 

Soakai, 2013). Not only from an environmental, but also from an economical point of 

view, solar power and wind power are nowadays preferable to diesel generators. 

Thus, an increasing number of scientific publications deal with integrated renewable 

energy systems in isolated grids. The most common combination in implementation 

and research is a thermal power plant (diesel generator) with wind power, solar 

power or both. Several hybrid grids are already realized or in progress (Neves, Silva, 

& Connors, 2014). A study of 155 isolated grids revealed that the majority is found in 

regions with a very high solar irradiation (Werner & Breyer, 2012). Because of 

comparably higher prices for small wind turbines and a decrease of PV module prices 

in recent years, solar power has become the least costly choice for several isolated 
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areas (Hazelton et al., 2014). Furthermore, the forecast of solar power is very reliable 

which makes it simpler to implement in existing grid structures. Remote areas often 

lack the understanding and required data of their wind regimes. Additional 

requirements for the construction and transport of a wind turbine leads to bigger effort 

and the need of a better infrastructure, often exceeding the resources of isolated 

communities (Mofor et al., 2013). 

In order to further analyze the economic and functional interaction of flexible loads 

and PV power generation, a mathematical optimization model for an isolated grid and 

its system components based on economic issues is developed in this thesis. The 

main questions for this research are: 

 How does the integration of a PV system influence the energy supply system 

and what is the capacity of the economically most beneficial PV system? 

 How do flexible loads influence the utilization of the PV system and the optimal 

PV size capacity? 

 How can a decentralized integration of flexible loads be implemented and what 

is the impact on the overall energy supply system? 

 What are the most important uncertain input or system parameters and how 

do changes influence the model and its results? 

In order to answer these questions, the thesis is structured as following: in chapter 2, 

the theoretical and technical background of the above mentioned research questions 

is presented. Chapter 3 is introducing the methodology for the optimization and the 

model itself. A case study using the developed model is presented in chapter 4. The 

results of the developed model are discussed in chapter 5. A conclusion and an 

overview for future research are given in chapter 6.  
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2 Background 

2.1 Demand side management 

Demand side management (DSM) is the ability to influence the electricity 

consumption of end users. It is seen as a possible way to reduce peak demand and 

to utilize the flexibility of the demand side which makes it possible to increase the 

penetration of renewable energies (Gelazanskas & Gamage, 2014). One example is 

to encourage end-users to reduce their loads during peak-times. Generally, DSM can 

be divided into four strategies:  

 peak shaving: reduce demand at peak hours  

 valley filling: increase load during off peak-times  

 conservation: reduce entire energy demand of end-users  

 load shifting: utilize flexible loads or energy storages to reschedule energy 

demand 

The last mentioned strategy, load shifting seems as one of the most promising 

strategies, because it can meet the requirements of the demand and supply side in 

form of fluctuating renewable energy sources. By the utilization of flexible loads and 

storages, it should be guaranteed that a process is operated continuously with its 

required constraints (Lund, Lindgren, Mikkola, & Salpakari, 2015). 

 

Fig. 1 Demand side management strategies (Gellings, 1985) 

The technology which is used to realize demand side management is nowadays seen 

to be based on information communication technology (ICT) and advanced metering. 

Although ICT is an already long existing and mature technology, a widespread 

implementation of DSM has not been accomplished. Reasons are the lack of the 

required ICT infrastructure and the associated capital costs, the lack of standards 
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and protocols for information transfer and in addition the lack of a developed market 

framework in which all players are integrated. Furthermore, security and safety risks 

and questions concerning the sensitive user data still have to be solved (O׳Connell, 

Pinson, Madsen, & O׳Malley, 2014).  For isolated grids, DSM can play a major role to 

balance demand and the fluctuating power generation of renewable energies. The 

effect of DSM, like energy efficiency programs and flexible loads, on the energy 

system of the island Flores (Azores, Portugal) has been studied for a time horizon of 

ten years (Pina, Silva, & Ferrão, 2012). The authors conclude that the 

implementation of DSM strategies, especially load shifting, leads to a higher capacity 

factor of renewable energies and hence increases the profitability of renewable 

energy investments1. They observe that the application of load shifting saturates 

around 40% of the maximal possible load shifting potential.  Another study examining 

the energy system of Flores in which the authors introduce different amounts of 

manageable demand,  comes to similar results (Livengood, Sim-Sim, Ioakimidis, & 

Larson, 2010). The authors summarize that controllable demand helps to displace 

diesel-generated electricity and to increase the capacity factor of the existing wind 

and hydro power plants. They also observe that with higher rates of responsive 

demand the displacement of diesel-generated electricity declines, because load 

shifting is limited to one day. This effect is reduced when the possibility of load 

shifting into the next day is given.  

 

2.1.1 Demand response 

The distinction between DSM and demand response is not consistent. In this 

research, demand response is seen as one of the possible mechanisms to achieve 

demand side management, especially load shifting. As presented in Fig. 2, it is 

distinguished between incentive and time-based programs (Shariatzadeh, Mandal, & 

Srivastava, 2015). Incentive programs, for example direct load control, reward end-

users when they provide flexible loads which can be controlled by a central control 

entity. In time-based programs, end-users are encouraged to actively participate in 

the electricity market by rescheduling their demand. This corresponds to the load 

shifting scenario presented in chapter 2.1. When utilizing distributed power 

generation, users also have the possibility to act as a power generator or reduce their 

                                                           
1 Capacity factor: Ratio of actual produced energy over potentially produced energy for a certain time period 
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load for the grid. The incentive to change the consumption can be provided by 

variable electricity prices. Examples for variable electricity prices are time-of-use 

rates (TOU), critical peak pricing (CPP) and real-time pricing (RTP).  

 

Fig. 2 Categorization of demand response programs 

In TOU rates, electricity is more expensive during peak hours and cheaper during 

valley hours. This should lead to a reduced peak load and to an increase of load in 

valley hours. CPP is mostly offered to large industrial electricity consumers. It 

increases the electricity price during high peak-load events and thus consumers are 

expected to reduce their demand. RTP provides the end-user with a variable price for 

electricity and could for example represent the actual electricity production costs. The 

temporal resolution ranges from real time up to 1 hour and are hence often also 

called hourly prices (O׳Connell et al., 2014; Shariatzadeh et al., 2015). Demand 

response can either be achieved by a central direct-controlled approach from system 

operator side or by a decentralized indirect-controlled approach in which the end-

users themselves control their appliances (O׳Connell et al., 2014). A comparison of 

these two different approaches with a high penetration of wind power in an isolated 

grid is conducted for the island Gran Canaria (Spain) (Dietrich, Latorre, Olmos, & 

Ramos, 2012). The centralized approach allows up to 30% of total costs savings on 

windy days with low demand and a capacity factor of 100% for the wind turbines is 

achieved. The decentralized approach does not reach as much savings in total costs, 

but it shows higher savings during peak hour periods. An implementation of demand 
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response in an isolated grid is executed in King Island (Australia) (de Groot, Forbes, 

& Nikolic, 2013; Nikolic et al., 2014), the island Bornholm (Denmark) (Gantenbein, 

Binding, Jansen, Mishra, & Sundstrom, 2012) and Pulau Ubin Island (Singapore) 

(Fan, Rimali, Tang, & Nayar, 2012). For the island Sao Miguel (Azores), a RTP 

based demand response study with solar power production is conducted (Asensio & 

Contreras, 2014). The authors of this study observe a varying peak load with different 

solar power penetration. With moderate PV power integration, peak load decreases 

up to 6%. High PV power integration leads to an increase in peak load with up to 

2.5% due to low price signals. Energy storage systems and demand response in an 

isolated grid with high shares of renewable energies have been also compared 

(Alharbi & Bhattacharya, 2013). Demand response results in lower total system cost 

and is therefore economically preferable to an energy storage system. 

 

2.1.2 Decentralized smart grid control via electrical frequency 

The grid frequency can serve as a universal measurement of the relation between 

electricity supply and demand. It decreases when supply exceeds demand and 

increases when demand exceeds supply. This feature is nowadays already used in 

traditional grid control and power generation scheduling. In future, end-users could 

be responsible of grid control by adjusting their demand according to the frequency. 

First investigations of how to use the frequency for demand response have been 

done more than 30 years ago (F.C. Schweppe, 1982). The same authors conclude 

that for a decentralized approach, the RTP time resolution should not be higher than 

five minutes. Beyond this resolution, a central grid control is needed to ensure grid 

stability (Fred C Schweppe, Caramanis, Tabors, & Bohn, 1988). Furthermore, a small 

time resolution reveals the actual costs of electricity production to end-users and 

maximizes economic efficiency. Another study of demand response controlled by 

frequency concludes that it definitely has the ability to stabilize the power network 

(Short, Infield, & Freris, 2007). A recent idea is to use the frequency to communicate 

real-time prices (Schäfer, Matthiae, Timme, & Witthaut, 2015). The price for electricity 

could be directly derived from the frequency. The authors of this study conclude that 

this approach leads to grid stabilization and to market equilibrium when short delay 

times in processing the frequency into the price signal are assumed. Further, it can 

be found in literature that decentralized demand response driven by price signals 
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reduces peak demand (Barbato, Capone, Chen, Martignon, & Paris, 2015; 

Ramchurn, Vytelingum, Rogers, & Jennings, 2011). It is to notice that multiple studies 

also observe new peaks caused by low price signal response (Gelazanskas & 

Gamage, 2014). A case study with two large industrial consumers in Ireland shows 

that price signals lead to a higher utilization rate of wind power (Finn & Fitzpatrick, 

2014). The influence of decentralized demand response in isolated grids has also 

been studied (Ramos, Canizares, & Bhattacharya, 2014). The authors state that 

demand response can be added to the total demand not only once, since smart 

devices and also users learn from the past and therefore adapt their future behavior, 

resulting in a two-way dependency of demand and price and a kind of iterative 

demand adjustment. A decentralized demand response system based on frequency 

as price signal would require much less hardware and investment costs compared to 

the “traditional” ICT approach. Additionally privacy and security issues do not occur. 

This idea is pursued by the start-up Easy Smart Grid GmbH from Karlsruhe (Walter, 

2014).  

 

2.2 Flexible loads 

As earlier discussed in this thesis, flexible loads are essential for any demand 

response program, because only they can enable a rescheduling of the load profile 

and hence a load shifting. Flexible loads can be distinguished between households, 

service sector and industrial loads. Household loads can be further divided into 

shiftable static loads and thermal loads (Ramchurn et al., 2011). Examples for 

shiftable static loads are devices like washing machine and dishwasher. These 

devices show a precise running time and load pattern. Thermal loads, like freezer, 

refrigerator, water heating and space heating depend on the usage and the ambient 

temperature. Flexible loads in the service sector are of the same kind as in 

households. Examples are ventilation systems, hot water generation, food store 

refrigerators, air conditioning, night storage heaters and municipal waste water 

treatment (Lund et al., 2015). Desalination systems can also be classified to the 

service sector loads. Reverse osmosis (RO) desalination is used for the further 

investigation on flexible loads in this paper. Industrial loads are often seen as an 

electrical base load, but some industrial processes are also already under control of 

the system operator and hence are handled as flexible loads. Electricity storage 
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systems, like batteries represent a different kind of flexible loads and have to be 

regarded separately. 

 

2.2.1 Desalination as flexible load 

Desalination capacities are increasing worldwide as drinking water is becoming a 

more and more rare resource, especially in coastal-like and desert-like areas. In 

these regions mostly abundant renewable energy resources are available. As 

desalination is a potentially flexible and energy intensive process, it seems very 

attractive to combine it with renewable energy sources (Tzen & Papapetrou, 2012). 

Desalination processes can be classified into thermal and electrical processes 

(Mathioulakis, Belessiotis, & Delyannis, 2007). First, thermal desalination processes 

comprise multi-stage flash, multi-effect, vapor compression and humidification-

dehumidification desalination. Second, electrical processes are actually mechanically 

driven membrane processes and are represented by mechanical vapor compression 

and RO desalination. RO is seen as the technology of choice as it has a much lower 

specific energy consumption per produced m³ of water (2-6 kWh/m³ for membrane 

processes compared to 7-14 kWh/m³ for thermal processes) (Subramani, 

Badruzzaman, Oppenheimer, & Jacangelo, 2011). Furthermore, 31% of the current 

desalination plants which are utilizing renewable energy sources are based on RO 

technology and solar power (Papapetrou, Wieghaus, & Biercamp, 2010). The 

desalination process in this thesis should be regarded as a flexible load in the 

electrical grid. Hence, RO is the technology that is investigated. RO achieves 

desalination by a semi-permeable membrane. The salty feedstock is pressed through 

the membrane by pumps. Salt is retained at the feedstock side while water passes 

through. The pressure which has to be applied has to be higher than the osmotic 

pressure. Nowadays, RO is applied as a constant process. But several studies 

already investigated the variable operation of this technology. A concept for a 

variable RO plant driven by wind energy is presented by ENERCON GmbH (Paulsen 

& Hensel, 2007). Their system consists of four modular RO units, each continuously 

adjustable from 50% to 100% of its power rating. The ENERCON system has a 

variable water production output from 12.5% to 100% of its rated capacity and a 

specific energy consumption of 2.0 kWh/m³ to 2.5 kWh/m³. In a case study on the 

island Utsira in Norway, it has been observed that 100% of the annual energy 
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demand can be supplied by wind energy due to the flexible operation. The 

investigation of different operational strategies for a RO plant is modeled (Pohl, 

Kaltschmitt, & Holländer, 2009). The authors investigate four operational strategies 

(energy consumption, load range, pressure alteration and permeate quality) for a 

wind power driven optimal variable operation. A broad load range with low specific 

energy consumption is realized with a constant recovery strategy which allows an 

operation of the desalination unit even under low energy supply. A RO system of one 

unit with a RO system made up of three units is compared (Peñate, Castellano, Bello, 

& García-Rodríguez, 2011). Both systems are powered by wind energy and a case 

study for Gran Canaria is conducted. Another modular and variable RO plant which 

can be driven by renewable energies is presented by SYNLIFT Systems GmbH 

(Käufler, Pohl, & Sader, 2012). It consists of two RO units. Both can be shut down 

and operated continuously between 50% and 150% of their rated power. 

Furthermore, it is investigated if variable operation leads to a decrease in 

performance and efficiency due to membrane damages. They conclude that variable 

operation is totally feasible.  

 

2.2.2 Battery storage 

Battery storage (BS) systems are one kind of several energy storage systems, which 

are distinguished between electrical, mechanical, chemical and thermal energy 

storage technologies (Akinyele & Rayudu, 2014). To start with, electrical energy 

storage systems are, for example, supercapacitors and superconducting magnetic 

energy storage. Further pumped hydro storage, compressed air storage and 

flywheels belong to mechanical energy storages. Batteries and hydrogen storage 

systems are chemical storage technologies. Last, energy storage systems can be 

characterized by their energy storage capacity (kWh), energy density (Wh/l), power 

density (W/l), charge/discharge duration, power output (kW), response time, lifetime 

(years or cycles), round-trip efficiency and capital cost ($/kW or $/kWh) (Castillo & 

Gayme, 2014).2 Energy storage can have several positive benefits for the whole 

system: grid stabilization, power quality management, load shifting and grid 

operational supports (Mohammed et al., 2014). Although in general energy storage is 

a net consumers in the grid due to the conversion losses, it is seen as the technology 

                                                           
2 Round-trip efficiency: the ratio of energy used for charging to the resulting discharged energy  
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which can possibly overcome the issues of fluctuating renewable energy production 

and which can increase the energy and economic efficiency of the electricity system 

(Lund et al., 2015). These benefits can be even higher for isolated grids, as electricity 

supply is in general more expensive and voltage constraints are higher due to the 

small size (Rious & Perez, 2014). Pumped hydro storage is seen as the most mature 

and advanced storage technology. Its utilization would require hydroelectric dams 

and large water reservoirs. Therefore, this technology cannot be considered in the 

case of isolated grids and especially islands. The same applies to compressed air 

storage. Electrical energy storage systems are short term storages and therefore not 

further considered in this thesis. BS systems are already widely applied in isolated 

grids and fit their needs the best, because they are seen as the most flexible, reliable 

and responsive technology (Chauhan & Saini, 2014; Rious & Perez, 2014). Batteries 

store energy in form of electrochemical compounds in cells. The desired voltage and 

capacity is achieved by connecting cells in series or parallel (Fathima & Palanisamy, 

2015). There are various types of batteries with different properties, advantages and 

disadvantages.  

  

Fig. 3 Ragone plot for several batteries comparing their performance (Tsutsumi, 2012) 
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Fig. 3 gives an overview of the performance of different chemical energy storage 

technologies. Common drawbacks of batteries are self-discharge and a decreasing 

performance with increasing cycles. Operation and maintenance cost of batteries are 

low, compared to the capital and replacement costs which represent the main costs 

(Lund et al., 2015). The most popular and mature battery technologies are lead-acid, 

nickel-cadmium, sodium-sulfur and lithium-ion batteries. Lead-acid batteries have 

already been widely used for decades. Their major advantages are the comparably 

low cost per kWh of energy capacity and their maturity. Disadvantages are their low 

life cycle (500-1000 cycles), low energy density (30-50 Wh/kg), failure of deep 

discharge and the associated environmental impacts. The batteries round-trip 

efficiency is around 70-90%. Nickel-cadmium batteries have similar environmental 

issues. Compared to lead-acid batteries, nickel-cadmium batteries show better 

technical properties, including a much higher energy density (50-75 Wh/kg) and 

higher robustness in operation and temperature. They have a medium short life cycle 

(2000-2500 cycles), and are relatively more expensive. Sodium-sulfur batteries are 

high temperature batteries and hence are operating at 300-350°C. Heat energy from 

own-stored energy is used to reach this temperature. They are characterized by no 

self-discharge, a round-trip efficiency of 90% and a high energy density. Additionally, 

larger installations are preferable. Like lead-acid batteries, lithium-ion batteries are 

already widely implemented. They show a high energy density (75-200 kWh/kg), high 

life cycle (around 10000 cycles), low self-discharging and a high round trip efficiency. 

Furthermore, no memory effect is observable. The drawback of the lithium-ion 

technology is its high costs for large installations (Akinyele & Rayudu, 2014; Chauhan 

& Saini, 2014; Lund et al., 2015; Mahlia, Saktisahdan, Jannifar, Hasan, & Matseelar, 

2014; Yekini Suberu, Wazir Mustafa, & Bashir, 2014). It is expected that further 

research will lead to advances in already existing battery technology, resulting in 

lower costs, higher efficiencies and higher energy densities, and to new battery 

technologies, like flow batteries which are currently just emerging (Rious & Perez, 

2014).  

 

2.3 Isolated grid 

All reviewed studies on the sizing and controlling of hybrid grid components in an 

isolated grid deal with at least one renewable energy source, an energy storage 
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system and a traditional power generation unit, mostly powered by diesel fuel. Most 

of the studies include solar power and wind power possibilities. Different storage 

systems are regarded, ranging from one to several battery technologies, pumped 

hydro storages, flywheels and hydrogen production combined with fuel cells. In the 

literature most often hourly steps are chosen for the temporal resolution. The 

optimization objective differs from a single economical objective, like the levelized 

cost of energy (LCOE) or the total net present cost, to multi objectives including also 

the loss of power supply or environmental aspects, like CO2 emissions. For the 

optimization, commercial software like HOMER, H2RES or mathematic models 

solved by particle swarm optimization, iterative processes, differential evolution 

algorithms or mixed integer liner programming are utilized.  

Table 1 Different modeling approaches of a hybrid grid with desalination 

Author Focus Components Desalination Objective 
Optimization 

approach 

Case 

study 

Setiawan, 

Zhao, and 

Nayar (2009) 

Sizing; laboratory 

experiments on 

inverter and RO 

Wind, PV, BS, 

DG  

Operation 

deferrable (8h/d); 

water tank for two 

days 

Minimization: 

Annualized 

capital cost, 

LCOE, net 

present cost 

HOMER Maldives 

Raquel 

Segurado, 

Krajačić, 

Duić, and 

Alves (2011) 

Sizing with 

horizon till 2030 

Wind, DG, 

pumped hydro 

Water tank for 5 

days 

Maximization: 

Renewable 

penetration 

H2RES  
Cape 

Verde 

Kristina 

Bognar, 

Blechinger, 

and Behrendt 

(2012) 

Sizing; different 

strategies for 

desalination 

Wind, PV, BS, 

DG 

Operation with 

excess energy, 

constant  or 

deferrable;  water 

tank for two days 

Minimization: 

Total net present 

cost 

HOMER Grenada 

K. Bognar, 

Pohl, and 

Behrendt 

(2013) 

RO integration 

and modeling ( 

variable pressure, 

power flow); sizing 

of battery 

Wind, BS, DG 

Operation 

constant, 

discontinuous   

Minimization: 

LCOE 
HOMER 

Cape 

Verde 

Novosel et al. 

(2014) 

Energy 

management with 

30% of traditional 

power 

RO with 

pumped 

hydro, wind, 

PV 

Water demand 

hourly constant; 

different 

desalination 

capacities 

Maximization: 

Renewable 

penetration 

EnergyPLAN Jordan 

R. Segurado, 

Costa, Duić, 

and Carvalho 

(2015) 

Investment and 

operational 

optimization 

Wind, PV, BS 

pumped hydro 

Operation with 

wind excess 

energy  

Minimization: 

Costs with 

highest 

penetration of 

wind  

H2RES 
Cape 

Verde 
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In general, many case studies are conducted to present the developed models. 

These range from island systems, to the electrification of rural villages or households. 

All studies reviewed for this thesis are listed in the Table 18 in the appendix. Several 

papers also include desalination units in their investigation of isolated hybrid energy 

systems. The consideration differs from the unit sizing of desalination plants and the 

optimal operational strategy in a hybrid system. They investigate RO as desalination 

technology and use commercial software (HOMER, H2RES, EnergyPlan). They also 

either include batteries or pumped hydro storages as can be seen in Table 1.  

 

2.3.1 PV power generation 

Photovoltaics (PV) power generation utilizes directly the incoming solar irradiation 

from the sun by converting it into direct current. The photons hitting a solar cell 

induce a direct current in the cell. This current can be amplified and inverted to the 

desired alternate current. In practice, several cells are connected in series and 

parallel, and are called a solar module (Fathima & Palanisamy, 2015). Different 

technologies have been developed which can be classified in mono-crystalline, poly-

crystalline and thin-film cells. PV modules manufactured out of crystalline silicon are 

the most common and popular technology. As an indirect semiconductor, they reach 

a theoretical efficiency of 30%. Nowadays multi-crystalline cells reach an efficiency of 

16%, while mono-crystalline cells reach 17 to 20%. As silicon has a relative low 

absorption coefficient, these solar cells need to be built comparably thick. Thin-film 

cells can be built with very little material and thus could provide a high cost reduction 

potential. Examples of thin-film cells are amorphous silicon, cadmium-telluride, 

copper-indium-selenium and organic solar cells. Commercially available thin-film 

solar cells do not reach the same high efficiencies yet, but with further research this 

is expected to change in the future. Fig. 16 in the appendix shows the efficiency 

records for different PV technologies in research for the last 40 years.  (Kristina 

Bognar, 2013; Journeay-Kaler & Mofor, 2013) 

 

2.3.2 Diesel generator 

Diesel generators (DG) are the most common way to meet electricity demand in 

isolated areas. Also in future hybrid grid systems, they will be needed as reliable 
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power source or as backup system (Bajpai & Dash, 2012). A characterization of a 

diesel generator is done by its efficiency, its hourly fuel consumption and its specific 

fuel consumption (Yamegueu, Azoumah, Py, & Zongo, 2011). The efficiency is the 

highest in the operation window of 80-100% of its rated power. The minimal load of a 

diesel generator should be not less than 25% of the rated power as efficiency 

decreases and wear and tear increases (Schies, 2013). This effect can be seen in 

Fig. 4. The rated power is commonly chosen as the expected peak load. The 

operation strategy can either be load following or constant power delivery. This will 

lead to party-load operation of the diesel generator in a load following operation 

strategy and hence it will not run in its technical optimum. As a consequence, it could 

be advantageous to operate two diesel generators with half capacity. (Journeay-

Kaler & Mofor, 2013) 

 

Fig. 4 Efficiency of DG for different load factors (Schies, 2013) 

 

2.3.3 Grid configuration and grid control 

With the integration of highly fluctuating renewable energies, new challenges for the 

regulation of voltage and frequency in electricity grids arise. These challenges are 

even higher in smaller grids, due to their volatile load profile. Therefore, an energy 

management with suitable control strategies has to be developed (Journeay-Kaler & 

Mofor, 2013). This should provide primarily grid stability by balancing demand and 
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supply, but also optimize the interaction of all components. It can be differentiated by 

the unit which is responsible for balancing demand and supply. Three types of 

configurations for the integration of PV power in microgrids can be formed  and are 

displayed in Fig. 5 (L. A. C. Lopes, Katiraei, Mauch, Vandenbergh, & Arribas, 2012):   

 multi-master DG dominated grid architecture  

 single switching master grid architecture  

 multi-master inverter dominated grid architecture 

 

Fig. 5 Schemes of isolated grid configurations with PV integration (L. A. C. Lopes et al., 2012) 

In a multi-master DG dominated grid, the responsibility for the desired power quality 

and system stability has one or several DGs. At least one of the DGs has to run 

continuously to guarantee this function. PV power can be easily integrated in the grid 

with direct current (DC) to alternate current (AC) inverters. However, it must be 

assured that the DG is not running below its minimal loading factor (reasons are 

stated in chapter 2.3.2). This restricts the maximal renewable penetration in the grid.3  

To increase the renewable penetration, excess power of renewables can be 

curtailed. A commercial implementation to curtail PV power is, for example, already 

offered by SMA Solar Technology AG with their SMA FUEL SAVE CONTROLLER 

("SMA FUEL SAVE CONTROLLER"). The complete shutdown of the DG is only 

possible with adequate energy storage capacity, resulting in the single switching 

master grid architecture. The controlling responsibility is switched between DG and 

the AC-DC inverter of the PV and battery unit, allowing the DG to shut down. This 

requires additional communication between the system units and a master unit to 

realize an appropriate energy management and switch between the different 

                                                           
3 Instantaneous renewable penetration: Ratio of the power drawn by renewables and the total load 
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operating modes. Such a configuration is suitable for smaller grids like isolated 

villages. The multi-master inverter dominated grid is designed for larger grids with 

additionally distributed AC sources like distributed PV or DG power stations. The 

stability of the grid is guaranteed by certain DGs and several, varying inverters. In 

this case, a specific communication is not required, because the electrical properties 

of voltage and frequency, like in conventional power systems, are used for stabilizing 

the grid. Other ideas of configurations for the integration of PV power can be also 

found in the following literature: Arul, Ramachandaramurthy, and Rajkumar (2015); 

Carmeli, Castelli-Dezza, Mauri, Marchegiani, and Rosati (2012); Chauhan and Saini 

(2014); Nehrir et al. (2011); Nema, Nema, and Rangnekar (2009); S. Upadhyay and 

Sharma (2014).   
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3 Mathematical optimization approach 

An overview of different optimization approaches for hybrid grids is given in chapter 

2.3.  In this thesis, a mathematical model with several sub-models is developed and 

implemented in the General Algebraic Modeling System (GAMS). The program code 

can be found in the appendix. Each sub-model is presented in chapter 3.2. The 

optimization model is formulated as a linear program (lp) or mixed integer linear 

program (milp), depending on if an on/off operation for the diesel generator and 

desalination system is desired. To solve the lp/milp, the integrated Cplex solver from 

IBM is selected. With the required deterministic input data for one representative year 

(PV supply per kW peak, electricity demand, water demand), the decision variables, 

like the optimal investment for the PV power station and the BS, as well as the 

operation and energy management strategy, are determined by minimizing the 

equivalent annual total costs.  

 

3.1 Optimization of LP/MILP using GAMS and Cplex 

The mathematical model is implemented in the software GAMS. GAMS is an 

algebraic programming language which enables the user to formulate and solve large 

complex mathematical models. It has been originally developed by the World Bank in 

the 1970´s (Bussieck & Meeraus, 2004). GAMS does not solve the problem itself. 

Instead it calls third party solvers, like Cplex, Gurobi or ZIMPL (Chattopadhyay, 

1999). Nowadays, the used solver Cplex contains a variety of algorithms, but is 

named after the simplex method implemented in the programming language C. The 

mathematical model is formulated intentionally as lp or milp. In lp all equations, 

including the objective function, contain decision variables with linear relationships. A 

lp problem can be represented by a convex geometric polytope, which is shaped by 

the constraint equations of the problem. The geometric idea to maximize/minimize 

the objective function is to search along the edges of the polytope for the solution 

with the highest objective function value, because an optimal solution is always 

located on the shell of the polytope due to its convex shape. Therefore, the algorithm 

“walks” from an edge with a possible solution to the edge with a higher value for the 

objective function. When considering an off/on behavior, for example for the 

desalination unit or the diesel generators, the model has to be formulated as a milp 

by introducing binary variables. For mixed integer programming the Cplex solver 
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utilizes several methods, like branch-and-bound, branch-and-cut, branch-and-price 

and the cutting-plane method. In general, the milp is solved with a relaxation of the 

integer condition as a lp. This provides a first solution, which is not valid, but which is 

used as a lower bound. The actual milp is branched with different integer 

assumptions and solved subsequently.  The branch with the lowest gap to the lp 

solution forms the upper bound and is further investigated. The integer assumptions 

result in a decision tree of the problem which can be “cut” down due to the bounds 

and heuristic methods. The optimal integer solution is obtained, when the difference 

to the optimal bound solution is lower than a predefined gap tolerance.  

 

3.2 Mathematical model 

The model for the optimization of the isolated grid consists of sub-models, which are 

presented in the chapters 3.2.1 to 3.2.7. The sub-models and their interrelation are 

shown in Fig. 6. The red continuous arrows symbolize the electricity flow while the 

blue dashed arrows are the water flow. 

 

 

 Fig. 6 Scheme of the isolated grid, with PV power generation and flexible loads 

 

The system components are visualized with different shapes, depending on their 

nature. Input data, like the electric demand, the water demand and the solar radiation 
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are displayed with an angular shape. The rounded rectangles, like the DG, the PV 

system and the RO system, are components which are changed during the 

optimization process and depend on decision variables. The corresponding input 

system parameters are listed above the items. The flexible loads, storages and 

demands can be also composed of different kinds like implied in Fig.6. For the 

energy part, the most popular example are heating and cooling loads. Examples for 

the material part are industrial processes like paper production, ice production etc.. 

The time steps are displayed with the indices t and a temporal resolution of 15 min 

per time step is selected. Thus, 35040 time steps for one year are taken into 

consideration. In the following equations, variables are expressed with small letters, 

while parameters are expressed with capital letters.  

 

3.2.1 Objective function and main constraints 

The objective of the optimization is to minimize the equivalent annual total costs. This 

is represented by the following equation in which the costs are determined by the 

costs of the DG, the PV system and the BS: 

min
{Decision Variables}

costtotal =     (3.1) 

costDG(dieselt
DG) + costPV(capacityPV) + costBS(capacityBS) 

The decision variables are the rated peak power of the PV system (capacityPV), the 

installed unit size of the BS (capacityBS) and the diesel used by the DG in each time 

step (dieselt
DG). When minimizing the objective function, the model has to fulfil certain 

constraints. The main constraints are the satisfaction of the electricity demand 

(Et
Demand) and the water demand (Wt

Demand) in each time step. The electricity demand 

and the required energy for the RO plant (et
RO) have to be supplied by the DG (et

DG), 

the PV system (et
PV) or by discharging the BS (−et

SB). Excess energy can be used for 

charging the battery (et
SB). This results in the following balancing equation for the 

electricity flux: 

Et
demand + et

RO + et
BS(capacityBS) =  et

DG + et
PV(capacityPV, et

DL)          ∀t  (3.2) 
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All terms are expressed in kWh. All variables, except for the electricity flow of the 

battery are of exclusive positive type (x≥0).  et
SB can be either positive when charging, 

or negative when discharging.  

The water demand (Wt
Demand) has to be supplied by the water storage (WS). The 

storage level is expressed by st
WS. The current level is derived by the previous level 

(st−1
WS), the incoming water flux from the RO plant (wt

RO) and the outgoing water 

demand: 

st
WS + Wt

demand = st−1
WS + wt

RO          ∀t    (3.3) 

The last storage level (t=35040) is thereby the initial level for the first value to achieve 

a yearly circular behavior. 

 

3.2.2 PV system 

The energy generated by the PV system depends mainly on the incoming solar 

irradiation and the capacity of the installed PV system. The given data of the 

irradiation are utilized by an already developed PV program of the IIP. This program 

considers a specific module type, temperature, orientation of the modules, several 

losses and indirect and direct radiation. It can be calculated how much energy is 

generated by a system with an installed capacity of 1 kWP (Et
PV1kWP). The generated 

energy is obtained by multiplying the installed peak power for the optimal PV system 

(capacityPV in kW). Thus, this is a decision variable and a result of the optimization 

process. It is divided by the factor four to convert the hourly produced energy to 15 

min steps. When PV power generation is exceeding the demand, it can be curtailed 

by a dump load (et
DL): 

et
PV = Et

PV1kWP ∙
capacityPV

4
⁄ − et

DL          ∀t   (3.4) 

The resulting annual cost of the PV system is expressed as an annuity and 

determined by the installed peak power, the price per peak power (CPV in $/ kWP) and 

the annuity factor (APV):  

costPV = CPV ∙ APV ∙ capacityPV    (3.5) 
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The annuity factor for the PV system is defined by the life time (LTPV in years) and 

the interest factor (I): 

APV =
(1+I)LTPV

∙I

(1+I)LTPV
−1

     (3.6) 

 

3.2.3 Diesel generator 

The diesel-generated electricity is a decision variable and hence a result of the 

optimization. With the specific fuel consumption (FDG,A) and the additional fuel 

consumption for the quarterly loaded DG (LDG), it is possible to calculate the 

characteristic values FDG,B and FDG,C for the linear modelling approach for a DG with 

decreasing efficiency, like presented by Yamegueu et al. (2011):  

FDG,C = LDG ∙ FDG,A/3          ∀t    (3.7) 

FDG,B = FDG,A − FDG,C          ∀t    (3.8) 

The consumed diesel fuel is calculated with the characteristic values for the DG and 

the produced electricity of the DG:  

dieselt = et
DG ∙ FDG,B + RPDG

4⁄ ∙ FDG,C          ∀t   (3.9a) 

The generated electricity is limited in both cases by the rated power of the DG: 

et
DG ≤ RPDG

4⁄           ∀t    (3.10a) 

For these linear approaches, the constraint for the minimal loading is developed in 

chapter 3.2.5 as it is related to questions of the grid stability. The drawback of these 

approaches are that diesel consumption is assumed even when the DG is in idle-

mode and no electricity is produced. Therefore, a binary variable (bt
DG) can be 

introduced to switch off the DG completely: 

dieselt = et
DG ∙ FDG,B + FDG,C ∙ bt

DG ∙ RPDG

4⁄           ∀t  (3.9b) 

Additional constraints assure that the DG is switched on and off accordingly and that 

low loading is avoided: 
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et
DG ≤ bt

DG ∙ RPDG

4⁄           ∀t    (3.10b) 

et
DG ≥ bt

DG ∙ RPDG

16⁄           ∀t        (3.11) 

The cost of the DG is calculated by its consumed fuel and its price (Cdiesel in $/l): 

costDG = ∑ dieselt ∙ Cdiesel               (3.12) 

Further capital costs for the DG are not considered, as already existing DG for the 

power supply are assumed.  

  

3.2.4 Battery storage 

The state of charge for the BS for a time step depends mainly on the state of charge 

of the previous time step and the charging or discharging of the battery for this time 

step. Like for the WS, the storage level of the first time step (t=1) depends on the 

storage level of the last time step (t=35040). Additionally, the round-trip-efficiency 

(LBS,rte) and self-discharging losses (LBS,sdl) have to be considered: 

st
BS = st−1

BS ∙ (1 − LBS,sdl) + et
BS − et

BS,neg
∙ (1 − LBS,rte)          ∀t  (3.13) 

The charging and discharging losses are derived from the negative part of et
BS, which 

is determined by: 

et
BS = et

BS,pos
− et

BS,neg
          ∀t    (3.14) 

Where et
BS,pos

 represents the charging flux and et
BS,neg

 the discharging flux. Both 

auxiliary variables are strictly positive. The stored energy has to be lower than the 

capacity of the resulting BS system, which is described by the amount of battery units 

(capacityBS) and the energy capacity per battery unit (SBS,cap in kWh/unit): 

st
BS ≤ capacityBS ∙ SBS,cap          ∀t    (3.15) 

Accordingly, the electricity flux et
BS is limited by the power capacity of the given 

battery (EBS,cap in kW/unit): 

et
BS ≤ capacityBS ∙ EBS,cap

4⁄           ∀t        (3.16) 
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et
BS ≥ −capacityBS ∙ EBS,cap

4⁄           ∀t         (3.17) 

The annual cost for the BS is again modeled as annuity and depends on the amount 

of the battery units, the price per battery unit (CBS in $/unit) and the annuity factor of 

the battery: 

costBS = CBS ∙ ABS ∙ capacityBS/LBS,dd           (3.18) 

The annuity factor can be determined accordingly to equation 3.5: 

ABS =
(1+I)TLBS

∙I

(1+I)TLBS
−1

     (3.19) 

 

3.2.5 Grid stability 

The grid stability has either be guaranteed by a running DG or by the BS. For the DG, 

it has to be assured that it is not loaded less than 25% of its rated power. The battery 

should at least provide half of the rated power of the DG when being responsible for 

grid stability. Therefore, the auxiliary variable gt
BS is introduced in the following 

equation: 

gt
BS

2
⁄ + et

DG ≥ RPDG

4⁄           ∀t    (3.20) 

This variable has to meet further constraints. First, it has to guarantee that there is 

enough energy stored in the battery at every time step: 

gt
BS ≤ st

BS          ∀t     (3.21) 

Second, it has to ensure that the battery can provide half as much power as the rated 

power of the DG: 

gt
BS ≤ capacityBS ∙ EBS,cap          ∀t            (3.22) 

 

3.2.6 Desalination system 

The RO plant is characterized by its energy consumed (et
RO) and its water output 

(wt
RO). These entities are related to each other by the conversion factor of the RO 
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system (FRO in kWh/l). An infinitesimal loss factor (LRO) multiplied with the alteration 

rate of the consumed energy, is also included: 

et
RO + LRO ∙ et

RO,neg
= wt

RO ∙ FRO          ∀t      (3.23) 

In the reviewed papers, no characterizations of RO losses have been found. In this 

thesis, the loss factor is included to moderate the operation of the RO plant and to 

avoid a jumping on/off behavior: 

et
RO − et−1

RO = et
RO,pos

− et
RO,neg

          ∀t          (3.24) 

All introduced variables for the desalination system are strictly positive. The 

consumed power of the RO unit is limited by its rated power (RPRO) and as a 

consequence also the maximal water output is limited: 

et
RO ≤ RPRO

4⁄           ∀t                 (3.25a) 

Furthermore, a milp model for the RO system is developed to restrict the minimal 

possible operating point to 25 % of the rated power by introducing the binary variable 

bt
RO: 

et
RO ≤ RPRO

4⁄ ∙ bt
RO          ∀t     (3.25b) 

et
RO ≥ RPRO

16⁄ ∙ bt
RO          ∀t       (3.26) 

The saltwater input is considered abundant and therefore without any constraints. 

Costs for the desalination system are not part of the optimization process. They are 

analyzed separately with the results of the optimization. 

 

3.2.7 Water storage 

The maximal storage capacity is set to be equivalent to the averaged water demand 

for a certain number of days (SWS,max). This leads to the following constraint for the 

storage level for all time steps: 

st
WS ≤ ∑ Wt

demand ∙ SWS,max

365⁄           ∀t    (3.27) 

No costs for the WS system are assumed.  
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3.3 Decentralized integration of a flexible load with a price signal 

The decentralized integration approach of the flexible load is realized with a variable 

price signal for each time step. All introduced constraints of the previous chapters are 

still valid and essential. However, the objective of the optimization changes to the 

minimization of the arising costs for the desalination plant due to its consumed 

energy: 

min
{Decision Variables}

costRO =  Pt
RO ∙ et

RO    (3.28) 

The decision variables only consist of the energy consumption of the RO system in 

each time step. For a better understanding of the decentral control, the price signal 

has to be further analyzed. The price signal is modeled as a parameter to realize 

again a linear programming problem. For a first understanding, it is assumed that the 

price signal represents the actual electricity production costs, which is a mix price 

based on the ratio of supplied DG electricity and PV electricity. The RO plant is a 

large consumer in the grid, and hence a very strong dependency between the price 

for electricity and the consumption of the RO plant exists. Therefore a chronological 

perspective is introduced where the current point of time is represented with the 

value of the parameter “counter”. Furthermore, it is assumed that the RO plant only 

has the information about the real electricity production cost in the “present”, which 

corresponds to t with the value of “counter”. This price is determined from the fuel 

costs of the DG, as PV electricity is seen as a source with zero variable costs: 

Pt
RO =

dieselt∙Cdiesel

Et
demand          ∈ t = counter    (3.29) 

The actual resulting price for the regarded time step results from the optimization of 

the RO plant and is determined after the optimization: 

Pt
RO =

dieselt∙Cdiesel

Et
demand+et

RO          ∈ t = counter    (3.30) 

The “future” prices, meaning pt with values of t higher than “counter”, are a prediction 

based on the past prices, meaning pt with values for t lower than “counter”, of the 

corresponding moment of the last three days. For achieving a dependency between 

the scheduling and the price signal and thus a somehow smart scheduling of the RO 
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plant, the actual resulting prices like presented in (3.30) are used for the price 

prediction:  

Pt
RO = 1

3⁄ ∙ Pt−96
RO + 1

3⁄ ∙ Pt−188
RO + 1

3⁄ ∙ Pt−272
RO           ∀t > counter        (3.31) 

In conclusion, the optimal decentral control of the RO plant is obtained by conducting 

an optimization for each “current” time steps. The counter is thereby used to “walk” 

down the timeline. This results in an approach with as many optimizations as time 

steps. The initial price signal for the first optimization is a mean price resulting from 

the total ratio of DG electricity and PV electricity for the whole year from the global 

optimization. Therefore, the decentral operation approach first has to “adjust” itself 

and learn from the first scheduling of the RO plant. The decision for the point of time, 

meaning et
RO with t equal to “counter”, and the deriving values of the other 

parameters are saved in auxiliary parameters and used as input data for the next 

optimizations along the timeline. 

 

3.4 Sensitivity analysis and identification of uncertain parameters 

All parameters, either system parameters or input data, are exposed to uncertainty. 

For example, the electrical demand can increase due to new electrical consumers, 

the solar irradiation can increase or decrease due to changes in the microclimate or 

the efficiency of the DG can decrease due to wear and tear. These changes have an 

influence on the optimization model, especially its results on the total costs, the sizing 

of the system components and the corresponding system control. The parameters 

differ in their deviation and can be restricted by empirical values and estimations. The 

investigation of the variation of the parameters and their restrictions is the first step in 

the identification of uncertain parameters. An sensitivity analysis of the parameters is 

executed subsequently, whereby the influence of the variation of the parameter on 

the optimization results are regarded (Campolongo, Saltelli, & Cariboni, 2011). This is 

done with a simple One Factor At a Time (OAT) method. One parameter is changed 

and its influence on the outcome of the optimization is calculated, while all other 

parameters remain at their initial values, called the working point. The parameter is 

set back to its initial value, and the influence of the next parameter is determined 

accordingly. The results of interest are the total costs. The analysis is done with the 

energy system resulting from the optimization for the reference scenario, thus with 
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predefined PV and BS sizes. The reason is that the investment decisions are made in 

the beginning of the considered time period. Hence, the influence of the uncertain 

parameters on the chosen optimal system is of major interest. The uncertain 

parameters are ranked by the resulting change of the total costs of the considered 

deviations in descending order. In this way, the most important uncertain parameters 

for the optimized energy supply system can be identified. Although already more 

advanced techniques are presented and used in modelling practices to identify 

additional interferences among the parameters, this approach is seen as sufficient in 

this thesis, since the model is developed strictly linear and additive (Saltelli & Annoni, 

2010). Thus, a global sensitivity analysis is achieved also with the OAT analysis.  
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4 Case study: Ha’apai, Tonga 

With the presented model, a case study is conducted for the islands of Lifuka and 

Fao, which are part of the island group Ha’apai, belonging to the Kingdom of Tonga. 

Tonga is located in the south pacific, in the north of New Zealand. It consists of four 

island groups (Tongatapu, Ha’apai, Vava’u and Niuas) with 176 islands, 36 of them 

inhabited. The climate is tropical with a warm wet season from November to April and 

a colder dry season from May to October ("Climate Summary of Tonga," 2015). The 

total population is estimated to be around 103,000, with 73% living on the biggest 

island Tongatapu, followed by Vava’u with 15%, Ha’apai with 6%, ‘Eua with 5% and 

Niuas with 1% ("Census of Population and Housing," 2013).  77% of the population is 

considered to live in rural areas. Tonga has a small economy, remittances and 

agriculture activities contribute the most to the GDP. However most of the food needs 

to be imported and agriculture products are the main export earnings (Mofor et al., 

2013). 89% of all households are connected to the electricity grid. Electricity on the 

larger islands is provided by Tonga Power Ltd (TPL), a state-owned enterprise which 

runs DGs with a total capacity of 16.5 MW. Most of the grid-supplied electricity is 

generated with imported diesel fuel and so imported fuel makes up around 22 % of 

the total annual imports (Finau, 2014). Therefore a ten year work plan, the Tonga 

Energy Road Map (TERM) 2010-2020, has been developed to reduce the 

dependency on imported fuel and the fluctuating oil price ("TONGA ENERGY ROAD 

MAP (TERM) 2010-2020," 2010). Several activities related to TERM in the electricity 

supply sector have been already implemented, like the grid-connected 1.3 MWP and 

1 MWP PV stations on Tongatapu or the 500 kWP PV station on Vava’u. The Tonga 

Water Board (TWB) is responsible for the water supply in the urban centers of the 

large islands. The water demand is mostly satisfied by groundwater in the form of 

freshwater lenses and by collected rainwater ("National Integrated Water Resource 

Management Diagnostic Report: Tonga," 2007).  

 

4.1 Background Lifuka & Foa, Ha’apai 

Ha’apai is an island group in the center of the Kingdom of Tonga, around 170 km 

north of Tongatapu and 130 km to the south of Vava’u. The two neighboring islands, 

Lifuka and Foa, are the two biggest islands of Ha’apai and have a total population of 

around 4500. They are linked with a street and share the same electricity network 



29 
  

and power supply run by TPL. The locations of the consumers and possible locations 

of the system components are displayed in Fig. 7. All presented data concerning the 

energy supply system and solar irradiation have been generously provided by TPL 

and represent data of the year 2013. 

 

Fig. 7 Map of Lifuka and Foa with the domestic demands and possible locations for the system 
components of the isolated grid (Google Maps, 2015) 
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4.2 Electricity demand 

TPL supplies around 1000 customers who have an average consumption of 120 kWh 

per month, per customer according to meter readings. In addition to that TPL 

supplies the biggest consumers, which are the communications operators, Tonga 

Communications Corporation and Digicel, the chapels, TWB water pumps, the 

hospital and the high schools. The energy produced by TPL in the year 2013 for each 

day is shown in Fig. 8. It shows a very consistent electricity production for the whole 

year, although slightly higher in the warmer period from December to April. 

Furthermore, differences for weekdays and weekends are observable. The received 

data from TPL have several missing values. Those are linearly interpolated either 

from the values of the next time step or for larger gaps even for the corresponding 

day of the next week. As a consequence, the data for the whole August are more or 

less weekly repeated.  

  

Fig. 8 Yearly and detailed load profile for Lifuka and Foa 
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Moreover, the data for January and half of February are assigned from November 

and December, because the received data ranges from mid of February 2013 to mid 

of February 2014. But due to the heavily destructive cyclone Ian in January 2014, the 

data from January 2014 onwards are not representative. The load curve of Lifuka 

and Foa is characterized by a mean load of around 200 kW (50 kWh per 15 min), 

with a base load of 150 kW (38 kWh per 15 min) and a peak load up to 350 kW (88 

kWh per 15 min) in the evening hour. As displayed in Fig. 8, workdays and holidays 

like Sundays are characterized by a slightly different load shape. During the week, 

the offices of the communication corporations and the schools add load in the 

morning and afternoon hours. Common to both is the high evening peak around 

20:00 primarily due to lighting and cooking. Saturdays are very similar to workdays. 

 

4.3 Electricity supply system 

The current electricity is supplied by two DG with a total capacity of 186 kW each 

from the type Cummins NT855. The DG are specified with a fuel consumption of 

0.210 kg/kWh, which results in 0.25 l/kWh assuming a density of 0.840 kg/l for diesel 

fuel. This value corresponds to FDG,A. For the model, one DG with a total capacity of 

372 kW is considered. Two DG would be modeled with two equation of 3.7b, both 

with the issue of diesel consumption in idle mode, or with two equation of 3.7c in the 

milp case, which would increase the computational effort drastically.  

Table 2 Technological input parameters for the DG 

Parameter Cummins NT855 

𝐑𝐏𝐃𝐆 372 kW 

𝐅𝐃𝐆,𝐀 0.25 l/kWh 

𝐋𝐃𝐆 30 % 

𝐅𝐃𝐆,𝐁 0.239 l/kWh 

𝐅𝐃𝐆,𝐂 0.011 l/kW 

𝐂𝐝𝐢𝐞𝐬𝐞𝐥 1.2 $/l 
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Therefore the two DG are considered as one DG with a minimal possible load of 47 

kW, which corresponds to a quarterly loaded single DG with an additional fuel 

consumption of 30% (see Fig. 4.). This results in 0.239 l/kWh for FDG,B and 0.011 

l/kW for FDG,C. A constant diesel fuel price for the case study is assumed. The fuel 

price is set to 1.2 $/l, like published by the government for September 2015. Table 2 

summarizes all input data regarding the DG. 

 

 

4.4 Solar irradiation and PV system 

As no recent high-resolution data for Ha’apai are available, the solar irradiation data 

on an hourly basis of the Maama Mai solar facility on Tongatapu are utilized. The 

data are linearly interpolated to the required resolution of 15 min steps. Because 

Tongatapu is located 170 km in the south of Ha’apai, the actual irradiation should be 

slightly higher, but as stated in the IRENA report for Tonga in 2013, the differences 

for the whole island Kingdom should not be considerable. Tonga has a high solar 

resource in general for all months. It is to notice that the irradiation is higher during 

the warm period when the sun stands high on the horizon with around 1000 W/m². It 

decreases from March on to about 800 W/m² from May to August. The temperature 

data are based on averages measured from 1971-2000 at the Salote Pilolevu airport 

on Lifuka ("CLIMATOLOGICAL INFORMATION – SALOTE PILOLEVU AIRPORT 

(HAP)," 2006). The data contain daily minimal and daily maximum values for each 

month that are shown in Table 3. The maximal temperature is assumed from 13:00 to 

16:00 o`clock and the minimal temperature from 20:00 to 06:00. The hours between 

are calculated with a linear interpolation. 

Table 3 Average maximal and minimal temperatures of Lifuka 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average 

maximal 

temperature 

29.5 30.0 29.8 28.9 27.4 26.4 25.8 25.6 25.9 26.9 28.0 28.8 

Average 

minimal 

temperature 

23.8 24.1 24.1 23.2 22.0 21.2 20.0 19.9 20.3 21.3 22.5 23.3 
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For the computations with the IIP PV program, a standard multi-crystalline silicone 

PV module with an efficiency of 16.4% under standard test conditions is selected. 

The alignment of the module is optimized and should happen with an inclination of 

16.3% towards north. For a capacity of 1 kWP, a module area of 6 m² is needed. The 

energy produced from a system with 1 kWP for each day in 2013 is shown in Fig. 9. 

As already mentioned, the average produced solar energy is the lowest from May to 

August. The high distortions in February and March are also remarkable. Those 

occur due to heavy rainfall, because these two months are the wettest months of the 

year. 

  

Fig. 9 Generated energy of a PV System with 1 kWP in Tongatapu 

The current price of a PV system on Tonga with 1 kWP is roughly about 2,500 $ as 

communicated by TPL. The life time and project time of the PV system is estimated 

at 20 years with an interest rate of 10%. The input parameters for the PV system are 

shown in Table 4. 
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Table 4 Technological input parameters for the PV system 

Parameter c-Si 

Module efficiency 16.4% 

𝐂𝐏𝐕 2,500 $/1kWP 

𝐋𝐓𝐏𝐕 20 years 

𝐈 10% 

 

4.5 Battery storage system 

The characteristics of the considered BS system are derived from a lithium-ion 

battery system which has been offered to the IIP for one of its projects. The price for 

one battery unit, which offers an energy capacity of 1 kWh and a power capacity of 1 

kW, is 1,000 €. However, due to the foreign currency translation and assumed higher 

costs for transportation and installation in Tonga, a price of 1,200 $ is used. The 

lithium-ion battery offers a round-trip efficiency of 90% and a deep-discharging level 

of 90%.  

Table 5 Technological input parameters for the battery storage system 

Parameter Lithium-ion battery 

𝐄𝐁𝐒,𝐜𝐚𝐩 1 kW/unit 

𝐒𝐁𝐒,𝐜𝐚𝐩 1 kWh/unit 

𝐋𝐁𝐒,𝐫𝐭𝐞 90% 

𝐋𝐁𝐒,𝐝𝐝 90% 

𝐋𝐁𝐒,𝐬𝐝𝐥 0% 

𝐂𝐁𝐒 1200 $/unit 

𝐋𝐓𝐏𝐕 10 years 

𝐈 10% 
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The self-discharging losses for a lithium-ion battery in the regarded time periods are 

negligible. Because no real long-term experiences are known for the operation of 

lithium-ion battery systems, the life time of the BS is equal to the warranty of the 

manufacturer, which is ten years. Again an interest rate of 10% is chosen. All used 

data for the BS are shown by Table 5. 

 

4.6 Water demand 

The water supply is operated by the Tonga Water Board (TWB). On Lifuka and Foa, 

the water is extracted from a groundwater lens with water pumps partly powered by 

electricity, diesel fuel or recently also solar power. The South Pacific Applied 

Geoscience Commission (SOPAC) has carried out several studies examining 

Tonga´s water supply. For the Nuku’alofa area on Tongatapu, the average domestic 

water demand is estimated 0.1 m³ per day per person ("National Integrated Water 

Resource Management Diagnostic Report: Tonga," 2007). With 4500 inhabitants, this 

results in 450 m³ water per day for Lifuka and Foa. It is considered, however, that half 

of the demand is supplied by the RO plant and the other half by the existing 

groundwater pumps. The water demand is assumed to be consistent for the whole 

year, because no data for a more precise temporal distinction are available. During 

the day, from 07.45 to 19.30 o`clock, the water demand is estimated three times 

higher than during the night. For Ha’apai, the SOPAC report states that the 

groundwater is significantly contaminated due to septic tanks, pit latrines, pigs and 

over-pumping. A solution could be a seawater RO system, which can guarantee a 

clean water supply without further stressing the freshwater lens of the island. 

 

4.7 Desalination system and water storage 

The used desalination system is a modular and variable RO system from ENERCON 

("ENERCON DESALINATION SYSTEMS,"). A module has one water pump for the 

RO process and can desalinate 175-350 m³ seawater per day. The specific energy 

consumption is 2.5 kWh/m³ (Paulsen & Hensel, 2007). For the case study, a two 

module system is chosen. This results in a rated power of 72.3 kW and a desalination 

capacity of 700 m³/day. The infinitesimal loss factor is set to 0.01%. For the water 
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storage, a water tank with a storage capacity of two times the daily water 

consumption is assumed. All data are listed in Table 6. 

Table 6 Technological input parameters for the desalination system and the water storage 

Parameter Lithium-ion battery 

𝐑𝐏𝐑𝐎 72.97 kW 

𝐅𝐑𝐎 2.5 kWh/m³ 

𝐋𝐑𝐎 0.01 % 

𝐒𝐖𝐒,𝐦𝐚𝐱 2 days 
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5 Results and discussion 

The optimal energy supply system with the presented input parameters for the 

isolated grid of Ha’apai is studied. The different modeling approaches for the DG and 

the RO system are compared. Several scenarios for the energy supply system, the 

RO system and the BS are defined. The decentralized control approach with a price 

signal for the RO system is calculated and compared to the centralized control 

obtained by the optimization for the entire system. The identification of the most 

important parameters and the sensitivity analysis are presented afterwards. 

 

5.1 Optimal energy supply system 

The results of the optimization for the studied isolated grid on Ha’apai are presented 

in Table 7. The optimized system has to supply the yearly static energy demand of 

1,822,158 kWh and an additional 205,313 kWh for the RO system. The optimal 

installed PV system shows a capacity of 304.4 kWP and supplies 23.8% of the yearly 

energy demand. PV power needs to be curtailed regularly as the capacity exceeds 

the average load during midday and the maximal possible RO load, which are about 

200 kW and 73 kW. The proportion of the dumped load to the overall PV generated 

energy is 6.9%. The excess energy cannot be stored as no BS is installed. The total 

costs of the yearly energy supply sums up to 575,159 $, while the annuity of the PV 

system accounts for 89,403 $ and the diesel fuel cost accounts for 485,756 $. This 

results in a LCOE, which describes the ratio of the total costs over the total supplied 

energy, of 0.284 $/kWh. 

Table 7 Results of the optimal energy supply system for Ha'apai 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐏𝐕 

(kWp) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used 

𝐞𝐭
𝐏𝐕 

% of 𝐞𝐭
𝐃𝐋 

on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

LCOE 

($/kWh) 

ES3/RO3 1,545,776 304.4 481,694 35,532 23.8% 6.9% - 575,159 89,403 0.284 

 

The energy supply and demand characteristics for each month are displayed in 

Fig. 10. As expected, the dumped load is the lowest during the month of May, June 

and July, which also have the lowest solar irradiation. The required energy for the 

desalination process is distributed very consistently over the month. The reasons are 
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the comparatively small storage which can last only two days and the need to satisfy 

the water demand. 

 

Fig. 10 Electrical demand and optimized energy supply and RO operation for each month 

The operation of the system components for two different weeks is depicted in 

Fig. 11 and Fig. 12. Fig. 11 shows a week in the beginning of February with a high 

and very constant solar irradiation. During midday and high PV power generation, the 

DG mostly runs on its minimal loading capacity. 

  

Fig. 11 Energy supply/demand and operation of the RO system for a week in February with 
high and constant PV power production 
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consumption up to its rated power and thus tries to utilize as much PV power as 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

20000

40000

60000

80000

100000

120000

140000

160000

En
e

rg
y 

in
 k

W
h

E(demand) e(DG) e(PV) e(DL) e(RO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

10

20

30

40

50

60

70

80

90

100

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

0
6

:0
0

1
2

:0
0

1
8

:0
0

0
0

:0
0

S
to

ra
g

e
 l

e
v

e
l 

in
 r

e
la

ti
o

n
 t

o
 m

a
x
im

a
l 

s
to

ra
g

e
 l

e
v

e
l

E
n

e
rg

y
 i

n
 k

W
h

 p
e
r 

1
5
 m

in

E(demand) capacity(PV) e(DL) e(PV)

e(DG) e(RO) s(WS)



39 
  

possible. Between the sunshine hours the water desalination is scaled down to 

values mostly of 2 to 3 kWh per 15 min. The water storage is not filled above 30% of 

its capacity and is emptied in the morning of each day. This similar operational 

characteristic for each day is due to the constant solar radiation. The week for the 

mid of July with comparably low and fluctuating solar irradiation, displayed in Fig. 12, 

shows a very different operational strategy for the RO system and a different usage 

of the water storage. The RO plant increases the production of drinking water on the 

second day and keeps it up till the fourth day of the week to fill the water storage. 

Hence, it is possible to nearly shut down the desalination process on the fifth, sixth 

and seventh day which are very cloudy with low PV power production.  

 

Fig. 12 Energy supply/demand and operation of the RO system for a week in July with low and 
fluctuating PV power production 

 

5.2 Integration of PV power in different scenarios 

Four different energy supply scenarios for the integration of PV power are considered 

and compared: 

 ES0: business as usual, no investment possibilities in PV and BS, no RO 

system; static energy demand of 1,822,158 kWh 

 ES1: investment possibilities in PV and BS, no RO system; static energy 

demand of 1,822,158 kWh 
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 ES2: investment possibilities in PV and BS; static energy demand of 

1,822,158 kWh + static continuous RO demand of 205,313 kWh 

 ES3 (reference scenario): investment possibilities in PV and BS; static 

energy demand of 1,822,158 kWh + variable RO demand of 205,313 kWh 

In scenario ES0 and ES1, it is considered that the water demand is satisfied by 

groundwater and collected rainwater. The resulting optimal energy supply system 

and the corresponding costs are summarized in Table 8. As might be expected, the 

integration of a PV system leads to a reduction of the total costs of about 5.1%. 

Approximately 17.6% of the energy demand is satisfied by the PV system instead of 

the expensive DG. Again, not all PV generated electricity can be consumed and thus 

the dump load makes up 7.2% of the total generated PV energy. The LCOE 

decreases from 0.318 $/kWh to 0.298 $/kWh.  

Table 8 Results of the PV integration for Ha'apai 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐏𝐕 

(kWp) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used 

𝐞𝐭
𝐏𝐕 

% of 

𝐞𝐭
𝐃𝐋 on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

LCOE 

($/kWh) 

ES0 1,822,158 - - - - - - 565,117 - 0.310 

ES1 1,496,284 206.7 325,874 25,303 17.9% 7.2% - 532,246 60,701 0.292 

ES2 1,651,758 237.8 375,712 28,337 18.5% 7.0% - 586,028 69,840 0.289 

ES3 1,545,776 304.4 481,694 35,532 23.8% 6.9% - 575,159 89,403 0.284 

 

The introduction of the RO system adds a yearly load of 205,313 kWh. In the 

continuous operating case, this corresponds to an additional load of 5.9 kWh per 

15 minutes. Thus, the size of the PV system increases from 206.7 kWP in ES1 to 

237.8 kWP in ES2. Additionally, the LCOE decreases slightly to 0.289 $/kWh, 

because the DG operates with a higher efficiency and more PV energy is utilized. 

The optimal energy supply for a system with a variable operating RO plant, shows 

the highest capacity of PV power with 304.4 kWP. The ratio of consumed PV 

electricity increases to 23.8% and the ratio of unused PV power decreases to 6.9%. 

This leads to a further reduction of the LCOE to 0.284 $/kWh and to a reduction of 

the total costs of 1.9% compared to ES2. In conclusion, the optimal PV system for 

the isolated grid of Ha’apai is designed in such way that an excess of PV generated 
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electricity of about 7% exists. For all scenarios, the installation of a BS system is too 

expensive and not beneficial.  

 

5.3 Integration of desalination as a flexible load 

Again different scenarios are defined to analyze the impact of the integration of a 

flexible RO system and their results are listed in Table 9. The rated power of the 

variable RO plant is like previously defined about 73 kW: 

 RO2: integration of variable RO plant; PV system with 237.8 kWP (see ES2) 

 RO3 (reference scenario): see ES3 

 RO4: double the water demand (450 m³ per day)  for the standard variable RO 

system; PV size optimized 

 RO5: standard water demand (225 m³ per day) and RO system with double 

the capacity; PV size optimized 

 RO6: double the water demand (450 m³ per day) and RO system with double 

the capacity; PV size optimized  

Table 9 Results for the integration of a flexible RO desalination plant for Ha'apai 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐏𝐕 

(kWp) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used  

𝐞𝐭
𝐏𝐕 

% of 𝐞𝐭
𝐃𝐋 

on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

LCOE 

($/kWh) 

RO2 1,627,573 237.8 399,896 4,153 19.7% 1.0% - 579,084 69,840 0.286 

ES3/RO3 1,545,776 304.4 481,694 35,532 23.8% 6.9% - 575,159 89,403 0.284 

RO4 1,751,087 304.4 481,694 35,532 21.6% 6.9% - 634,112 89,403 0.284 

RO5 1,444,452 357.8 583,019 24,783 28.8% 4.1% - 561,720 105,058 0.277 

RO6 1,595,346 402.4 637,435 46,285 28.0% 6.8% - 618,171 118,181 0.277 

 

The installation of a flexible operating RO system leads to a radical decrease of 

unused PV electricity from 7.0% in ES2 to 1.0% in RO2. Thus, also the total costs of 

the energy supply and the LCOE decreases slightly by 1%. In scenario RO4 double 

the water demand is covered by the RO system. Compared to RO3, the results of 

RO4 reveal that the PV system size is optimized for the given RO capacity. The 
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additional energy demand of the RO system for satisfying the water demand in RO4 

is supplied by the DG. This leads to a decrease of the percentage of PV energy. The 

usage of a RO plant with twice the capacity results in a PV size of 357.8 kWP in RO5, 

which makes up 28.8% of the total energy supply. With 4.1% for the dumped PV 

electricity, this scenario introduces a new characteristic value. The optimal energy 

supply system for in RO6 with double the RO plant capacity and double the water 

demand has an even higher PV capacity, thus a higher penetration of PV power, a 

lower LCOE, but again a percentage of unused PV electricity around 7.0%. Important 

for the integration of the flexible RO system and the corresponding optimal PV 

system are the maximal available flexible capacity and the degree of flexibility which 

can be defined as ratio of demand to capacity, resulting in the effective operating 

time. For RO2, RO3 and RO6, the energy demand for the water desalination process 

is about 563 kWh per day. With a rated power of 73 kW for the RO plant, a minimal 

operating time of 7.7 hours is achieved. RO4 has double the demand and thus 

double the minimal operating time of 15.4 hours. The least effective operating time 

has RO5 with 3.9 hours.  

 

5.3.1 Operational characteristics of the flexible desalination system 

When the optimized operational characteristics of the RO system are analyzed, it is 

to notice that the RO system often operates with a low capacity factor between the 

sunshine hours. As presented in chapter 4.7, the considered RO system consists of 

two modules with an operating range from 4.6 kWh per 15 min to 9.2 kWh per 

15 min, resulting in a total system with an operating range from 4.6 kWh per 15 min 

to 18.4 kWh per 15 min. However the optimized operational characteristic often falls 

below this minimal load, like it also is displayed in the weeks in Fig. 12 and Fig. 13. 

The reference scenario is modeled with the unrestricted operating RO system as a lp 

model. Thus the RO system is operating 126.0 days in the invalid range. For a 

comparison, scenario RO3bin1 and RO3bin2 are defined, which are both optimized 

as a milp model with a restricted operating RO system: 

 RO3bin1: investment possibilities in PV and BS; static energy demand of 

1,822,158 kWh + variable RO demand of 205,313 kWh; RO system modeled 

as milp  
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 RO3bin2: fixed PV system with 304.4 kWP (see ES3/RO3); static energy 

demand of 1,822,158 kWh + variable RO demand of 205,313 kWh; RO 

system modeled as milp  

RO3bin1 is solved in 10 hours and 50 min with 0.1% for the tolerance gap, while 

RO3bin2 is solved in around 40 min, also with 0.1% for the tolerance gap. The lp 

approach of ES3/RO3 is solved in less than 10 min. The operational characteristics 

for the whole year are summarized in Table 10. The resulting differences are 

obvious. For the lp approach, the RO system operates 126 days of the year in the 

invalid operation range. This time interval is distributed in the over the valid operation 

areas in RO3bin1 and RO3bin2. However, the period of the full load operation only 

differs slightly in all scenarios. 

Table 10 Operational characteristics of the lp and milp RO modelling approaches 

Scenario System shut 

down ( 𝐞𝐭
𝐑𝐎 = 𝟎) 

Invalid operation range 

( 𝟎 < 𝐞𝐭
𝐑𝐎 < 𝟒. 𝟔) 

Valid variable operation range 

(𝟒. 𝟔 < 𝐞𝐭
𝐑𝐎 < 𝟏𝟖. 𝟒) 

Full load operation 

(𝐞𝐭
𝐑𝐎 = 𝟏𝟖. 𝟒) 

RO3 68.8 days 126.0 days 136.2 days 34.0 days 

RO3bin1 126.3 days - 203.7 days 35.0 days 

RO3bin2 122.9 days - 208 days 34.1 days 

 

The differences for the key figures of the two models presented in Table 11 are 

marginal. RO3bin1 shows a slightly lower PV capacity. Nevertheless, RO3bin2 with 

the predefined PV size results in less total costs and therefore it can be concluded 

that the optimal energy supply system for the operational restricted RO system is 

also 304.4 kWP.  

Table 11 Results of of the lp and milp RO modelling approaches 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐏𝐕 

(kWp) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used 

𝐞𝐭
𝐏𝐕 

% of 

𝐞𝐭
𝐃𝐋 on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

LCOE 

($/kWh

) 

ES3/RO3 1,545,776 304.4 481,694 35,532 23.8% 6.9% - 575,159 89,403 0.284 

RO3bin1 1,547,125 303.2 480,346 34,744 23.7% 6.8% - 575,177 89,034 0.284 

RO3bin2 1,545,780 304.4 481,690 35,536 23.8% 6.9% - 575,160 89,403 0.284 
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That is why, the linear modeling approach for the RO system is sufficient for this 

studies, because the computational extra effort for the milp approach does not offer 

any further understanding of the optimal energy supply system when the restrictions 

for the RO system are kept in mind.  

 

5.3.2 Economic analysis of the flexible desalination system 

As concluded previously, the integration of a flexible operating RO system is offering 

an economical benefit from the perspective of the energy supply system. For offering 

flexibility, the RO system has to be designed with an overcapacity, to have an 

effective operating time less than 24 hours. Higher capacity results in higher 

flexibility, but also in higher capital costs for installing the RO system. SYNWATER is 

calculating about 1,000 €/(m³/d) for a similar variable operating RO system (Käufler 

et al., 2012). As to the BS system, a 20% higher dollar price is assumed, giving 

1,200 €/(m³/d). The annuity factor is given by the operating life with 20 years and the 

interest rate with 10%. The resulting associated costs for the different RO systems 

are listed in Table 12. 

Table 12 Associated costs of the different RO systems 

Scenario RO capacity 

(m³/d) 

𝐜𝐨𝐬𝐭𝐑𝐎 

($) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥+𝐑𝐎 

($) 

ES2 225 31,714 586,028 617,742 

ES3/RO3 700 98,666 575,159 673,825 

 

The savings on the energy supply side with a flexible operating RO plant are not 

enough to compensate the additional capital costs of a RO system with overcapacity. 

Thus, ES2 results in the scenario with less total costs per year, when the capital 

costs of the RO system are also taken into considerations. 

 



45 
  

5.4 Integration of a battery storage system as a flexible load 

Although no BS system is chosen in the previous scenarios, the implementation of a 

BS as a flexible load is also analyzed. Therefore, several system parameters are 

predefined which are given in the following scenario: 

 BS3: fixed PV system with 304.4 kWP (see ES3/RO3); continuous operating 

RO plant; constraint to achieve the same PV power utilization 

(∑ 𝐞𝐭
𝐏𝐕=473,225 kWh) 

The results of BS3 are listed in Table 13. The scenario with BS are all optimized with 

the milp model for the DG to realize a possible shut down of the DG. 

Table 13 Results of the integration of a BS for Ha'apai 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used 

𝐞𝐭
𝐏𝐕 

% of 

𝐞𝐭
𝐃𝐋 on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

𝐜𝐨𝐬𝐭𝐁𝐒 

($) 

LCOE 

($/kWh) 

ES3/RO3 1,545,776 481,694 35,532 23.8% 6.9% - 575,159 89,403 - 0.284 

BS3 1,577,700 481,694 35,532 23.4% 6.9% 52.8 593,880 89,403 8,599 0.288 

 

Due to the predefined PV size and PV utilization, the scenario BS3 shows the same 

values for most of the key figures of the energy supply as ES3. However, the total 

energy supply in BS3 is 31,924 kWh higher due to the charging and discharging 

losses of the BS. This additional energy has to be supplied by the DG, hence 

reducing the percentage of the used PV electricity. The total costs of BS3 increase by 

3.3% in comparison to ES3/RO3. The capital costs for the BS only make up 46% of 

the additional costs, while 54% account for the additional fuel consumption of the 

DG. The BS is sized to achieve the predefined PV utilization. Its capacity is far too 

little to take over the responsibility for the grid stability and to realize a shut-down of 

the DG. An optimization with the milp model with a tolerance gap of 0.1% is solved in 

about 37 hours and 25 minutes. 
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5.5 Decentralized integration of the flexible desalination system with a 

price signal 

The results of the decentralized demand response approach for the flexible RO 

system are presented in Table 14. The scenario for the decentralized integration is 

defined as: 

 DI3: fixed PV system with 304.4 kWP (see ES3/RO3); Decentral integration of 

the RO system with an price signal 

Table 14 Results of the decentral integration approach of the RO system 

Scenario ∑ 𝐞𝐭
𝐃𝐆 

(kWh) 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐏𝐕 

(kWp) 

∑ 𝐞𝐭
𝐏𝐕 

(kWh) 

∑ 𝐞𝐭
𝐃𝐋 

(kWh) 

% of 

used 

𝐞𝐭
𝐏𝐕 

% of 

𝐞𝐭
𝐃𝐋 on 

𝐞𝐭
𝐏𝐕+𝐃𝐋 

𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐁𝐒 

(units) 

𝐜𝐨𝐬𝐭𝐭𝐨𝐭𝐚𝐥 

($) 

𝐜𝐨𝐬𝐭𝐏𝐕 

($) 

LCOE 

($/kWh) 

ES3/RO3 1,545,776 304.4 481,694 35,532 23.8% 6.9% - 575,159 89,403 0.284 

DI3 1,545,979 304.4 481,492 35,735 23.8% 6.9% - - - - 

 

It is remarkable that the resulting key figures of the optimizations are nearly the same 

for the decentralized optimization approach in PS3 as for the overall system 

optimization in ES3/RO3. Thus, the corresponding overall costs for the energy supply 

are also nearly equivalent. This result is very surprising, as the decentralized 

optimization is not concerning the condition of the other system components in any 

way. Differences are found in the operational characteristic of the flexible RO system. 

The summarized values for the whole year are presented in Table 15. 

Table 15 Operational characteristics of the decentralized integration of the RO system 

Scenario System shut 

down ( 𝐞𝐭
𝐑𝐎 = 𝟎) 

Invalid operation range 

( 𝟎 < 𝐞𝐭
𝐑𝐎 < 𝟒. 𝟔) 

Valid variable operation range 

(𝟒. 𝟔 < 𝐞𝐭
𝐑𝐎 < 𝟏𝟖. 𝟒) 

Full load operation 

(𝐞𝐭
𝐑𝐎 = 𝟏𝟖. 𝟒) 

RO3 68.8 days 126.0 days 136.2 days 34.0 days 

DI3 246.9 days 0.7 days 1.0 days 116.4 days 

 

The RO system in DI3 is either operating with full load or is shut down in the most 

cases. Thus the minimal load restriction for the RO system characteristic is nearly 

fulfilled. The RO system is just operating 0.7 days in the invalid operation range. The 
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detailed operation of the RO system is shown with the two typical weeks of beginning 

of February and mid of June in Fig. 13, respectively Fig. 14. Unlike for Figure 11 and 

Fig 12, the operation of the RO system is very similar for both weeks. When the 

energy generated by the PV system exceeds the rated power of the RO system, the 

RO system starts working and increases the water desalination to its rated value. It 

stops to operate, when the PV power generation is decreasing.  

 
Fig. 13 Energy supply/demand and operation of the decentralized integrated RO system for a 
week in February with high and constant PV power production 

 

Fig. 14 Energy supply/demand and operation of the decentralized integrated RO system for a 
week in July with low and fluctuating PV power production  

Hence, the RO operation is each day nearly the same, especially in the week of 

February. As additional information, the resulting price signal is displayed in Fig. 13 
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and Fig. 14. Exceptions are the first day and the fifth day of the week in July. Due to 

low PV power generation, the RO system limits the full loaded operation period. On 

the fifth day, the desalination process is even shifted to the evening peak, because of 

a low price signal due to the high working efficiency of the DG. This can lead to an 

overload of the DG. Regarding the whole year, the DG is overloaded 13 times, which 

corresponds to 3.3 hours. Compared to a whole year, this value is almost negligible. 

However, it is revealed that additional information on the total system condition for 

the decentralized integration of flexible loads is necessary. For example, this could 

be realized by a predefined additional level of information incorporated in the price 

signal.    

 

5.6 Sensitivity analysis and ranking of uncertain parameters 

The variations of the parameters are listed in Table 16. The cost of PV technology 

can also be much higher in Tonga as stated by TPL. Therefore a price increase of 

64% is assumed. Future research and technology improvement could also lead to a 

reduced PV price, which is considered with a decrease of 32%. The diesel price for 

Tonga is analyzed by a report of the world bank for the energy supply system of 

Tonga (Swales, Hughes, & Asseline, 2010). In the high oil price projection, a diesel 

price of 1.4 $ in 2020 is assumed. Moreover, a negative variance is also taken into 

consideration as the oil price is generally subject to variations. The report also 

assumes an increase of the electrical demand of maximal 20% till 2020. The 

population census in 2013 revealed that the population of Ha’apai is not increasing, 

because of an outflow of people to the mainland Tongatapu ("Census of Population 

and Housing," 2013). Thus, a decrease of 8% of the electricity demand also has to 

be considered. The power production of a PV system is exposed to degradation and 

to fluctuation of the solar irradiation, therefore an increase of 4% and a decrease of 

16% of the PV power production is analyzed (Osterwald, Anderberg, Rummel, & 

Ottoson, 2002). The specific fuel consumption of the DG is increasing with time and 

the value communicated by TPL is comparably low (Yamegueu et al., 2011). Hence, 

an increase of 32% is considered. The same applies to the energy consumption of 

the RO system. However an increase of 64% is considered, because comparable RO 

systems show an energy consumption of up to 4 kWh/m³ (Käufler et al., 2012).  The 

influence of the interest rate has to be analyzed, because it can vary for a developing 
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island state like Tonga, which is exposed to tropical storms like cyclone Ian in 2014. 

The life time of the PV system undergoes the same risks. The rated power of the DG 

and RO are assumed to decrease in time, each with 16%. When the groundwater of 

Ha’apai is further contaminated, the water demand for the RO system could increase 

drastically. For this analysis, an increase of 128% is considered. All assumed 

variations are listed in Table 16. 

Table 16 Variations of the uncertain parameters 

Parameter Reference value Maximal value Minimal value Maximal 

variance 

Minimal 

variance 

𝐂𝐝𝐢𝐞𝐬𝐞𝐥 1.2 $ 1.4 $ 1.0 $ + 16% - 8% 

𝐂𝐏𝐕 2,500 $ 4,100 $ 1,700 $ + 64% - 32% 

∑ 𝐄𝐭
𝐝𝐞𝐦𝐚𝐧𝐝 1,822,158 kWh 2,181,928 kWh 1,749,272 kWh + 20% - 4% 

∑ 𝐞𝐭
𝐏𝐕+𝐃𝐋 517,226 kWh 537,915 kWh 434,470 kWh + 4% - 16% 

𝐅𝐃𝐆,𝐀 0.25 l/kWh 0.33 l/kWh 0.25 l/kWh + 32% 0% 

𝐅𝐑𝐎 2.5 kWh/ m³ 4.1 kWh/ m³ 2.5 kWh/ m³ + 64% 0% 

𝐈 10% 16. 4% 3.8% + 64% - 64% 

𝐋𝐓𝐏𝐕 20 years 33 years 7 years + 64% - 64% 

𝐑𝐏𝐃𝐆 372 kW 372 kW 312 kW 0% - 16% 

𝐑𝐏𝐑𝐎 73 kW 73 kW 61 kW 0% -16% 

∑ 𝐖𝐭
𝐝𝐞𝐦𝐚𝐧𝐝 82,125 m³ 187,245 m³ 82,125 m³ + 128% 0% 

 

The result for the OAT sensitivity analysis and the influence of the uncertain 

parameters on the annual costs are presented in Fig. 15. It is remarkable, that all 

parameters except for the time life of the PV system, the electrical demand and the 

specific fuel consumption of the DG show a linear influence on the annual costs of 

the energy supply system. In the case of the electrical demand, an increase of 8% of 

the demand would lead to a loss of the energy supply in peak periods, because the 

load exceeds the rated power of the DG. The loss of the power supply is assumed to 
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result in high total costs. The degree of influence on the total costs is expressed by 

the slope of the line. Thus, the electrical demand, the specific fuel consumption of the 

DG and the price for diesel show by far the highest influence on the total annual 

costs. 

 

Fig. 15 Influence of the uncertain parameters on the annual costs 

However, the rating of the importance of the uncertain parameters results of the 

maximal possible deviation of the total annual costs and is presented in Table 17. 

The electrical demand and the specific fuel consumption are by far the most 

important uncertain parameters, due to their high influence on the total costs. The 

price for the diesel fuel is ranked third, because of its comparatively lower 

uncertainty. The water demand, the life time of the PV system and the cost for the PV 

system follow closely on the next ranks. The interest factor and the specific energy 

consumption of the RO system still show an influence of more than 5% on the total 

costs, while the rated power of the DG and RO system as well as the degradation of 

the PV system and uncertainty of the solar irradiation can be neglected in 

comparison to the other parameters.  
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Table 17 Maximal absolute deviation of the total costs and ranking of the uncertain parameters 

Parameter 

Maximal absolute 

deviation of the 

annual total costs 

Ranking of the 

importance of the 

parameter 

𝐂𝐝𝐢𝐞𝐬𝐞𝐥 13.5% 3. 

𝐂𝐏𝐕 10.0% 6. 

∑ 𝐄𝐭
𝐝𝐞𝐦𝐚𝐧𝐝 45.0% 1. 

∑ 𝐞𝐭
𝐏𝐕+𝐃𝐋 2.8% 9. 

𝐅𝐃𝐆,𝐀 39.7% 2. 

𝐅𝐑𝐎 6.7% 8. 

𝐈 7.3% 7. 

𝐋𝐓𝐏𝐕 11.1% 5. 

𝐑𝐏𝐃𝐆 1.4% 11. 

𝐑𝐏𝐑𝐎 2.3% 10. 

∑ 𝐖𝐭
𝐝𝐞𝐦𝐚𝐧𝐝 13.1% 4. 

 

 

5.7 Limitations and disadvantages of the optimization model 

Mathematical models cannot fully describe reality. One of the main limitations of the 

developed model is that no operating and maintenance costs are implemented. 

Furthermore, no electricity grid and no corresponding costs are modeled. Another 

limitation is the fact that the analyzed isolated grid, especially its DG, is seen as fixed 

without any possibilities to invest in a smaller or larger DG. Moreover, the model 

regards only one generic standard year for the electrical demand and the solar 

irradiation, which is used to analyze a time period of 20 years. Although deviations of 

the uncertain parameters are analyzed in chapter 5.6, the system parameters are 

assumed as constant during the time period. In order to limit the computational effort, 
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one needs to alternate between the lp and the milp models, especially for studies of 

the BS. Because of the computational effort due to the milp model, additional 

optimizations to study the BS have not been realized.  
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6 Conclusion 

The goal and motivation of this thesis is to answer the economic and functional 

interaction of PV power generation and flexible loads in isolated grids and the 

questions which are presented in chapter 1. In order to answer those issues, a 

mathematical optimization model for an isolated energy supply scenario has been 

developed and utilized for a case study of the remote islands of Lifuka and Foa in 

Tonga. As flexible loads, a desalination process in form of a RO system and a BS 

system are implemented and analyzed. For a better understanding of the model and 

its results, a sensitivity analysis, which includes an identification of the most important 

uncertain parameters, is conducted. The model is developed in GAMS as strictly lp, 

respectively milp and solved with IBMS`s Cplex solver. 

The integration of PV power in an isolated grid results in lower costs for the energy 

supply. In the analyzed scenario a cost saving of 6% is achieved. The maximal 

electricity generation of the optimal PV system is even exceeding the actual 

electricity demand, which leads to a curtailment of PV power. In average, 7% of the 

generated PV power is not used. The additional integration of flexible loads is 

resulting in a better utilization of an existing PV system. The curtailed PV power is 

decreasing to 1%. This leads to a higher share of consumed PV power and to a 

reduction of the total costs by 1%.  With the introduction of a flexible load, a higher 

PV capacity is economically preferable. Thus, the penetration of PV power can be 

enhanced further and the total costs can be decreased by 2%. The optimal PV 

capacity and the percentage of curtailed PV power are depending on the capacity of 

the flexible load and in particular on its degree of flexibility. In this thesis, the degree 

of freedom is analyzed as effective working time of the RO system. Although the 

actual implementation of the considered flexible operating RO system is economically 

not beneficial, it is shown that flexible loads in general are beneficial to increase the 

penetration of PV power. Furthermore, the results show that the analyzed BS system 

is disadvantageous compared to the RO system as flexible load, because of its 

charging and discharging losses. It is very surprising that the decentral integration of 

a flexible load with a price signal results in nearly the same key figures for the energy 

supply system compared to the optimization of the entire system. A simple forecast 

algorithm can be used to control the operation of the flexible load and a cheap 

integration of flexible loads could be realized by using the electricity frequency for 
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transmitting the price signal, as presented in chapter 2.1.3. Thus, making the 

integration of available flexible loads preferable to investments in BS systems. 

However, it must be recognized that the integration of a single flexible load in this 

thesis is a simple and constructed case. The most important uncertain parameters in 

respect to the emerging total costs of the optimized energy supply system are related 

to the usage and operation of the DG. The electricity demand, the efficiency of the 

DG and the diesel fuel price are by far the most influencing and also the most 

important uncertain parameters. 

Various possibilities for future research are seen in further studies of flexible loads 

and BS in isolated grids towards a higher penetration of renewable energies. The 

integration of other renewable resources like wind power are essential and are 

complementing PV power generation. Additional analysis of the BS system, 

especially in the context of taking over responsibility for the grid stability and realizing 

a DG shut-down, are necessary. A very broad and groundbreaking field of research 

opens up with the decentralized integration of flexible loads. In future research, it is 

essential to study the integration of multiple flexible loads instead of just a single one. 

A differentiation with several restrictions and several degrees of flexibility for the 

multiple flexible loads are desirable, in order to analyze their influence on the entire 

system and especially their interrelation between each other. 
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Appendix 

A Background  

Table 18 System sizing and energy management approaches for an isolated hybrid grid 

Author Focus Components Objective 
Optimization 

approach 

Case 

study 

Yang, Lu, and 

Zhou (2007) 
Sizing 

Solar, Wind, 

Battery 

LCOE, loss of power supply 

probability 
Iterative process 

Island in 

China 

Nayar, 

Markson, and 

Suponthana 

(2008) 

System planning 
Solar, Wind, 

Battery, Diesel 

LCOE, fuel saved, initial 

capital 

requirements 

HOMER Maldives 

Bala and 

Siddique 

(2009)  

Optimal design 
Solar, battery, 

Diesel 

Initial costs, operation and 

maintenance costs 
Genetic algorithm 

Island in 

Bangladesh 

Krajačić, 

Duić, and 

Carvalho 

(2009) 

 

Renewables, 

fossils,  storages, 

deferrable loads, 

hydrogen loop 

Penetration of renewables H2RES 
Island in 

Croatia  

Kaldellis, 

Zafirakis, and 

Kondili (2010)  

Sizing of PV and 

storage for 

autonomous 

energy supply 

Solar, storages, 

diesel 
LCOE 

Iterative process ( 

Variation of PV 

peak power and 

energy autonomy) 

Greek 

island 

Abedi, 

Alimardani, 

Gharehpetian, 

Riahy, and 

Hosseinian 

(2012) 

Sizing and 

power 

management 

strategy 

Wind, solar, 

storages 

Overall cost, unmet load, fuel 

emissions 

Differential 

Evolution 

algorithm 

Ardebil city, 

Iran 

Al-Shamma'a 

and 

Addoweesh 

(2012) 

Sizing  
Wind, solar, 

battery, diesel 
LCOE Genetic algorithms 

Village, 

Saudi 

arabia 

Amer, 

Namaane, 

and M'Sirdi 

(2013) 

Sizing 
Wind, Solar, 

Battery, Diesel 
LCOE 

Particle swarm 

optimization 
Household 

Kaabeche 

and Ibtiouen 

(2014) 

Sizing and 

energy 

management 

 
Total energy deficit, total net 

present cost, energy cost 
Iterative process 

Ghardaia, 

Algeria 

Luo, Shi, and 

Tu (2014) 

Storage sizing 

with wind power 
Wind, Storage Annualized costs Genetic algorithm 

Island, 

China 

Sharafi and 

Elmekkawy 

(2014) 

Sizing 

Wind, solar, 

diesel, batteries, 

fuel cell, 

electrolyzer, 

hydrogen tank 

Total costs, unmet load, fuel 

emission 

Particle swarm 

optimization 

Zaragoza, 

Spain 
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R. Wang, 

Wang, Xiao, 

and Gong 

(2014) 

Energy 

management 

with uncertainty 

of renewables 

as probability 

function 

Wind, Solar, 

Conventional 

Generators 

Variable costs (fuel 

consumed) 

Xueshu, 

Lapthorn, and 

Peimankar 

(2014) 

Sizing 
Wind, Solar, 

Battery, Diesel 

Annualized system cost, 

annualized capital cost 

LCOE),net present cost 

HOMER 
Ha´apai, 

Tonga 

Chang and 

Lin (2015) 

Sizing of several 

power stations 

Wind, Solar, 

Battery, Diesel, 

Storages 

Total costs (considering 

allocation and transmission) 

Metamodel-based 

algorithm 
 

Subho 

Upadhyay 

and Sharma 

(2015) 

Sizing and 

energy 

management 

strategy 

Wind, Solar, 

Biomass/biogas, 

Battery, Diesel 

LCOE 
Particle swarm 

optimization 

Villages, 

India 

X. Wang, 

Palazoglu, 

and El-Farra 

(2015) 

Sizing and 

energy 

management 

Wind, Solar, 

Battery, Diesel 
Annual capital cost 

Iterative process 

based on total 

energy demand 

and production; 

Dynamic 

simulation with 

minimization on 

total costs based 

on energy flows 

Household, 

California 
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Fig. 16 Development of different PV technologies Photovoltaics (2015) 
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B Model script of the developed lp 

*model for the optimization of PV+BS size and control of the isolated grid 

Sets 

t time steps in 15 min for a whole year /1*35040/ 

h  time steps in 1h for a whole year /1*8760/    ; 

 

Parameter 

PVhelp(h)   normalized supply of PV in kWh 

PVdeltahelp(h) delta of normalized irradation 

ePV1kWP(t) 

Edemand(t)    static demand of Tonga in kWh 

Wdemand(t)    water demand of Tonga in liter; 

 

*from excel data spreadsheet to gdx input files 

*$call "gdxxrw PV_tonga.xlsx o=PV_tonga.gdx @PVin.txt" 

*$call "gdxxrw DE_tonga.xlsx o=DE_tonga.gdx @DEin.txt" 

*$call "gdxxrw DW_tonga.xlsx o=DW_tonga.gdx @DWin.txt" 

 

*load data from gdx input files to the model 

$gdxin PV_tonga.gdx 

$load PVhelp 

$gdxin 

 

$gdxin DE_tonga.gdx 

$load DE 

$gdxin 

 

$gdxin DW_tonga.gdx 

$load DW 

$gdxin 

 

*interpolation of PV data to 15 minutes steps 

PVdeltahelp(h) = PVhelp(h++1) - PVhelp(h) 

loop(h,  



XX 
  

PV1kWP(t)$(ord(t) <= ord(h)*4 and ord(t)>(ord(h)-1)*4) = PVhelp(h) + PVdeltahelp(h)/4 * (ord(t)-((ord(h)-1)*4+1));) 

 

 

Scalar 

Cdiesel   price of one liter of diesel ($ per l)            /1.2/ 

FDGa   factor a for the DG (l per kWh)   /0.25/ 

FDGb  factor b for the DG (l per kWh) 

FDGc  factor c for the DG (l per kW) 

LDG  additional consumption for low loading  /0.3/ 

RPDG   rated power of diesel generator (kW)                  /372/ 

FRO      working efficiency of RO system (kWh per m³)   /2.5/ 

RPRO  rated power of reverse osmosis system (kW) /36.485/ 

LRO  infinitesimal loss factor for RO   /0.0001/ 

SWSmax     maximal WS (days)   /2/ 

CPV        price of one kW of peak power ($ per pkW)       /2500/ 

CBS       price of one BS unit              /1200/ 

EBScap  power per BS unit (kW)         /1/ 

SBScap   energy capacity per BS unit (kWh)  /1/ 

LBSrte   charging and discharging losses of BS  /0.1/ 

LBSdd  maximal discharge level of BS   /0.9/ 

I  interest rate     /0.1/ 

ANFPV  annuity factor for PV 

ANFBS  annuity factor for BS 

TLPV  operating life of PV station   /20/ 

TLBS  operating life of BS    /10/ 

; 

 

Variables 

costtotal 

eBS(t)  BS charge and discharge 

; 

 

Positive variables 

diesel(t) consumption of diesel per time step in liter 

eDG(t)  energy output of the diesel generator 
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ePV(t)  consumed PV power 

sWS(t)  water storage 

costPV  costs for PV 

capacityPV peak power of PV system 

wRO(t)  water inflow of RO to water storage 

costBS  cost of BS 

eBSpos(t) charging of BS 

eBSneg(t) discharging of BS 

gBS(t)  auxiliary variable of B Sfor grid stability 

capacityBS number of units of BS 

eRO (t)  reverse osmosis power demand 

eROpos (t) auxiliary variables for reverse osmosis power demand 

eRO neg(t) reverse osmosis power demand 

eDL(t)  dump load of PV 

; 

 

 

Equations 

cost        objective function with annulized costs in $ 

water(t)      water equations for water storage and input 

waterelectric(t)   relation from water input to reverse osmosis electric demand 

ROchange(t)  determining the change of RO demand 

dieselelectric1(t)   relation from consumed diesel to energy input in grid 

pvgeneration(t)  determining the usage of PV power 

grid(t)   grid equation for balancing electrical demand and supply 

investPV      investement for PV 

investBS     investemnt for the lihtium battery 

gridrestriction(t)   restriction for a minimal energy supply by diesel generator 

batterygridenergy(t)     restriction for battery grid stabilistation in regard to SOC 

batterygridpower(t)      restriction for battery grid stabilistation in regard to power output 

battery(t)    battery equation for charging discharging and storage 

batteryinoutlosses(t) losses for charging discharging 

energybattery(t)      restriction for eneryg capacity regarding investment 

powerbattery(t)       restriction for charging and discharging power regarding investment 

; 
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*equation for electric demand and supply 

grid(t).. Edemand(t) + eRO(t) =e= ePV(t) + eDG(t) +eBS(t) ; 

 

*diesel generator 

FDGc = (LDG/FDGa)/(7); 

FDGb = FDGa - FDGc; 

dieselelectric(t).. diesel(t) =e=   eDG(t)*FDGb + RPDG/4*FDGc ; 

eDG.up(t) = RPdiesel/4; 

 

*PV power generation 

pvgeneration(t).. ePV(t) =e= ePV1kWP(t)*capacityPV/4 - eDL(t); 

 

* reverse osmosis system 

waterelectric(t).. eRO(t) =e= wRO(t) *  FRO + eROpos(t)*LRO ; 

wRO(t).up =  RPRO*2/FRO/4; 

ROchange(t).. eRO(t--1) - eRO(t) =e= eROpos(t) - eROneg(t); 

 

*model for water tank 

water(t).. sWS(t) =e= sWS(t--1) + wRO(t) - Wdemand(t); 

sWS(t).up = sum(t,DW(t))/(card(t)/96)*SWSmax; 

 

*cost for PV 

investPV..  costPV =e= CPV * capacityPV * ANFpv; 

 

*cost for BS 

investBLI.. costBS =e= CBS * capacityBS * ANFbs; 

 

*BS 

battery (t).. sBS(t) =e= sBS(t--1) - eBS(t) - eBSpos(t)*effLI; 

batteryinoutlossesLI(t).. eBS(t) =e= eBSpos(t) - eBSneg(t); 

energybattery(t).. sBS(t) =l= SBScap * capacityBS; 

powerbattery (t).. eBS(t) =l= EBScap/4 * capacityBS; 
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*grid stability 

gridrestriction(t).. gBS(t)/16+DG1(t) =g=  RPdiesel/8; 

batterygridenergy(t).. gBS(t) =l= sBS(t); 

batterygridpower(t).. gBS(t) =l= EBScap * capacityBS; 

 

*annuity factors 

ANFpv = ((1+i)**TLPV)*i/(((1+i)**TLPV)-1); 

ANFli = ((1+i)**TLBS)*i/(((1+i)**TLBS)-1); 

 

*total cost 

cost.. costtotal =e= sum(t, diesel(t)) * Cdiesel + costPV + costBS/LBSdd; 

 

 

Model Tonga      /all/ 

 

 

Solve Tonga using lp minimizing costtotal; 

 


