


# Transforming energy system

## Use more Renewables and reduce Energy Cost

Introduction to Easy Smart Grid GmbH Praia, 13.10.2015

Dr. Thomas Walter (Founder and Managing Director)





### Leapfrogging Your chance to overtake





"Developing countries can leapfrog conventional options in favor of cleaner energy solutions, just as they leapfrogged land-line based phone technologies in favor of mobile networks."

Ban Ki-moon, New York Times 2012

- Cisco leapfrogged Siemens and Alcatel in transition to digital communication
- Apple leapfrogged Nokia in transition to smartphones

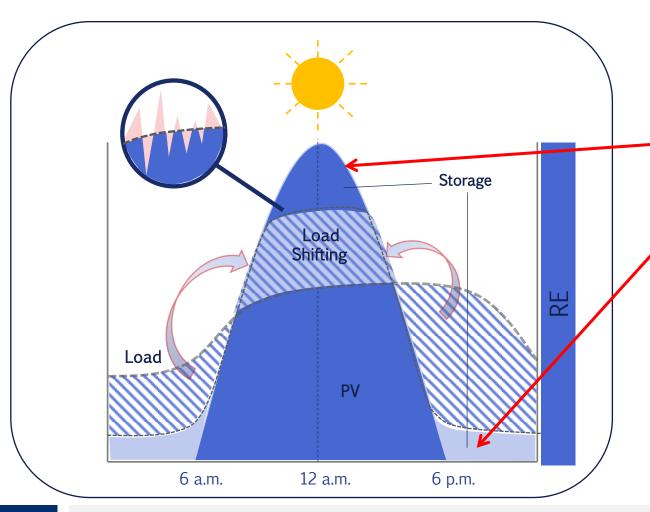
Source: Blog Prof. Wettengl: wettengl.info/Blog/?p=5072, Download 21.08.2015, Bullet points by Thomas Walter



## Changing Markets Islands have special situation and needs



- Potential for diesel replacement:
  - > 50 GW equivalent to
  - > 100,000,000,000 €/a
- Save 0,2 €/kWh when replacing diesel by PV (0.4 vs. 0.2 €/kWh)
- Use high DSM potential: Heating/cooling, pumps, desalination, electro mobility for More RE with minimum investment in storage



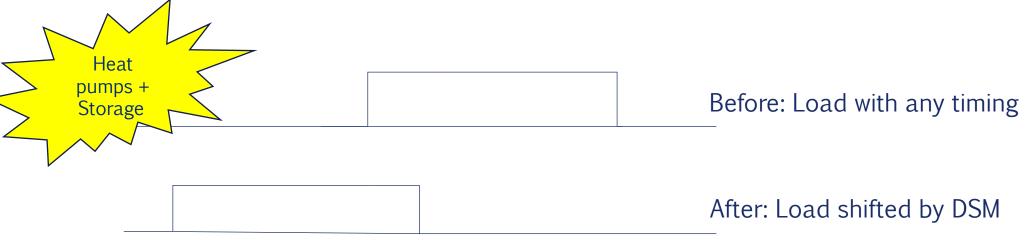



Introducing: Easy Smart Grid

## Demand Side Management Flexibility saves a lot of money






#### Benefits:

- -• Use more renewables: Absorb the peaks, don't shed them
- Pay less: For fossil energy and storage
- Let's make the Grid Smart:
   By coordinating DSM, flexible generation and storage



## Demand Side Management DSM is a very cheap battery





Charge

Discharge

In future:
Electric vehicles

Shift

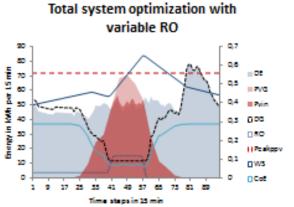
..the same applies to generation shifting – CHP

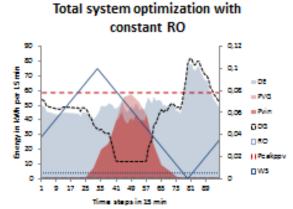


## Demand Side Management Example from Maldives



Cost examples taken from Maldives 2013


Diesel generation cost 0.50 \$/kWhPossible savings 0.25 \$/kWhPV generation cost 0.25 \$/kWh


| Battery storage                   |                                           | 0.40 \$/kWh or more                                     |
|-----------------------------------|-------------------------------------------|---------------------------------------------------------|
| Cooling  Desalination  E-mobility | 0.00 \$/kWh<br>0.00 \$/kWh<br>0.00 \$/kWh | <ul> <li>But need for storage and smart grid</li> </ul> |
|                                   | Smart Grid Cost                           |                                                         |



## Demand Side Managment Shifting Desalination Plant in Tonga







| 515 329 \$ Total annual cost for electricity supply |                         | 525 216 \$   |
|-----------------------------------------------------|-------------------------|--------------|
| 0,223 \$/kWh                                        | Cost of energy          | 0,230 \$/kWh |
| 84 262 \$                                           | Investment in PV system | 66 611 \$    |
| 288 kW                                              | PV peak power           | 228 kW       |
| 23,23 % % of PV energy for the whole year           |                         | 18,33 %      |



Savings on cost for electricity supply (diesel fuel + PV investment): 1.88 % (9887 \$)

- Water desalination is one very interesting option (calculation with Tonga data)
- Desalination is switched on when sun/ wind are available
- If no sun or wind energy is available, fresh water is taken from a tank
- Batteries are not needed
- Our first proposed step:
  - Use surplus renewable energy
  - Very low investment and good return!
- Collaboration of grid operator and customer is necessary
- And has benefit for both!

Source: Master Thesis M. Burkhard @KIT - yet unpublished. 28.09.2015



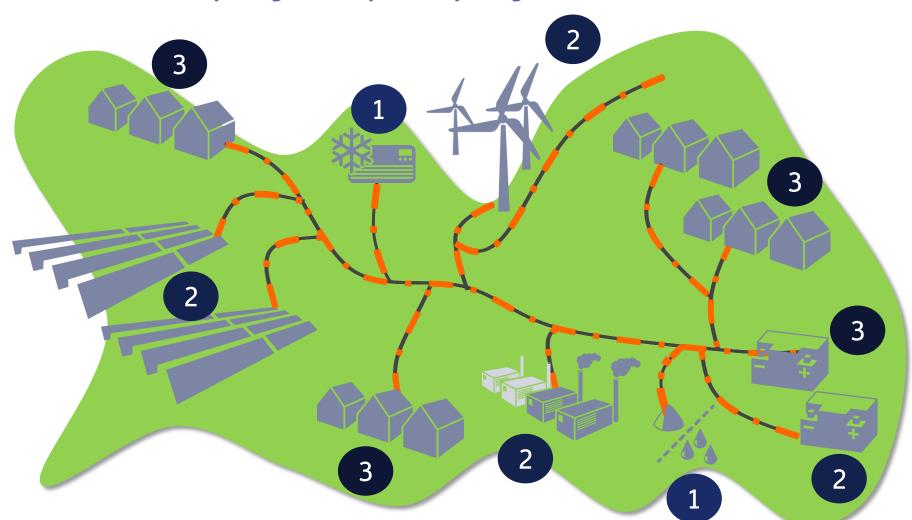
## Make Grid Smart We apply new concepts to balance grids



Generation < load Load < generation

*Increase* price until balanced *Reduce* price until balanced




Flexible generators Flexible consumers Storage devices Shift generation to *high price* times Shift consumption to *low price* times Charge at *low*, discharge at *high* price

A Real Time Market pilot implemented by "ECOGRID" on the island of Bornholm/Denmark

- ICT investment over 10 M€ (collect, process and communicate data)
- Price update every 5 min. to influence CHP (Combined Heat and Power) plants



## Easy Smart Grid Step by step deployment





#### Low hanging fruit

- Deploy pilot
- Use more RE by flexible large loads

#### 2. More RE, storage

- Additional RE
- Power storage for system stability

#### 3. Full functionality

- Integrate small flexibilities (household)
- Energy storage if needed



## Easy Smart Grid What do we offer?



#### Assumptions: Smart Grids need

Decentral management with price signal

Low cost implementation All flexibility can be used

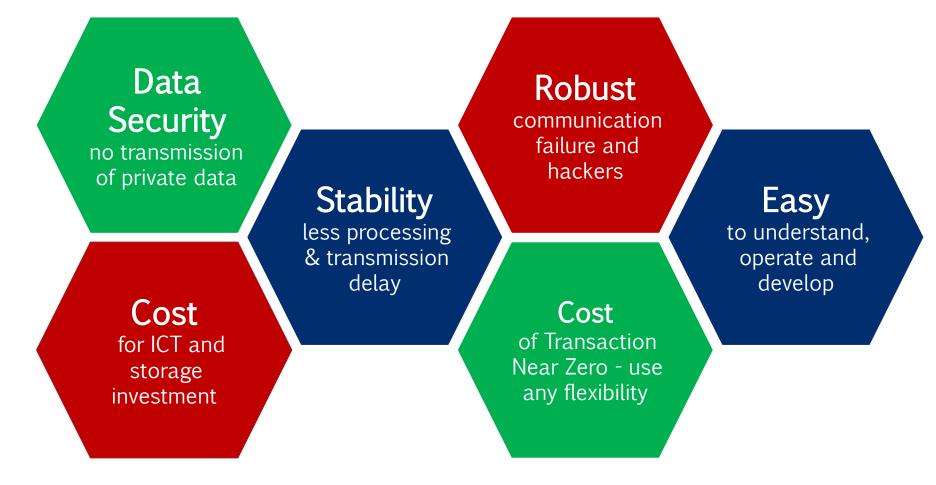


#### Transmit price by grid frequency (easy on island grid)

Automated load shifting - cheaply Fail safe communication

Real time, secure, resilient No investment in infrastructure




#### Evolutions with the same benefits

Real Time Market Self Balancing Grid Basis of Cellular Grids Cells coupled by power electronics



### Benefits over Conventional Smart Grid (1.0)







11

## What we look for: Partnerships for more RE



Tomorrow:

Solution for up to 80%

renewables needed

Introducing: Easy Smart Grid

Today: Partners install up to 20% renewables Result - Triple Win:

End Customers: cheaper energy

Our Partners: more business

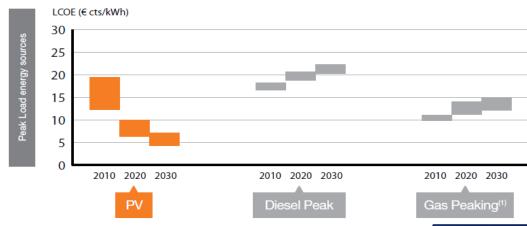
Easy Smart Grid: ICT solution



12

## Changing Markets Transformation: First oil, then gas...




Opportunity:

Know-how

transfer to

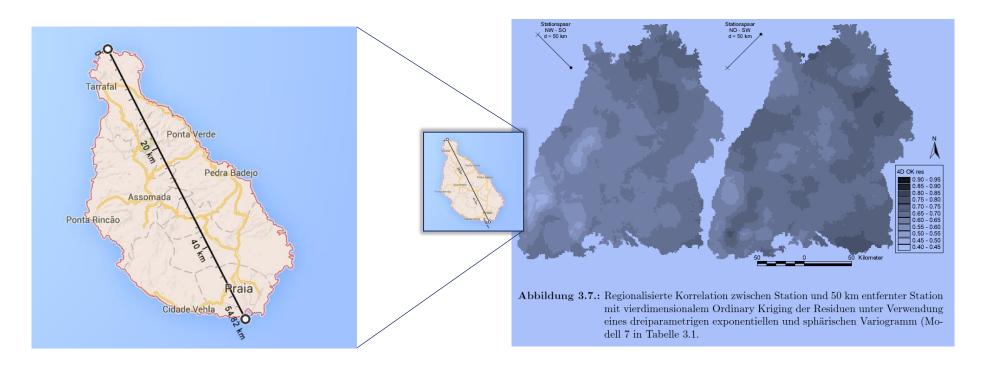
cellular grid

#### COMPARISON OF LCOE 2010, 2020, 2030, LOW CASE FUEL PROJECTION (€cts/kWh)



Grafic presentation: Unlocking the Sunbelt -Potential of Photovoltaics - March 2011 National Renewable Energy Laboratory, National Energy Technology Laboratory, EPIA Set for 2020, World Bank, A.T. Kearney analysis.

LCOE: Levelized Cost Of Energy O+M: Operation and Maintenance


Driver: Renewables already cheaper Solution needed: From 20 to 80% renewables Market: Quick growth, high volume

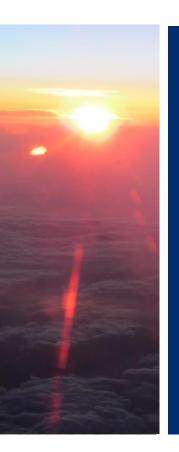
13

## Outlook Can Cabo Verde leapfrog Germany?



- > Islands today, Germany tomorrow: Smart Grid Cells
- > VDE: Cellular grid for 80% PV/wind scenario of 2050 with 60 km Ø?




Source graphics: Dissertation Jürgen Brommundt, 2008 Institut für Wasserbau Uni Stuttgart, Download 20.08.2015 http://elib.uni-stuttgart.de/opus/volltexte/2008/3470/pdf/Brommundt 170 online.pdf, Google Maps



14

Vorstellung: Easy Smart Grid





# Thank you for your attention and let's speak!

Thomas Walter
Easy Smart Grid GmbH
thomas.walter@easysg.de
+49 171 229 4629
www.easysg.de

